CONTENTS

S.No. Chapter Page

1. Sets 9
2. Relations and Functions 18
3. Trigonometric Functions 26
4. Principle of Mathematical Induction 36
5. Complex Numbers and Quadratic Equations 38
6. Linear Inequalities 45
7. Permutations and Combinations 49
8. Binomial Theorem 55
9. Sequences and Series 60
10. Straight Lines 68
11. Conic Sections 75
12. Introduction to Three Dimensional Coordinate Geometry 81
13. Limits and Derivatives 85
14. Mathematical Reasoning 95
15. Statistics 100
16. Probability 107
Model Test Paper - I 115
Model Test Paper - II 121

COURSE STRUCTURE

CLASS XI

One PaperThree HoursMax. Marks. 100Units Marks
I. Sets and Functions 29
II. Algebra 37
III. Coordinate Geometry 13
IV. Calculus 06
V. Mathematical Reasoning 03
VI. Statistics and Probability 12

Unit-I : Sets and Functions

1. Sets :

(12) Periods

Sets and their representations. Empty set. Finite and Infinite sets. Equal sets. Subsets. Subsets of the set of real numbers especially intervals (with notations). Power set. Universal set. Venn diagrams. Union and Intersection of sets. Difference of sets. Complement of a set. Properties of Complement Sets.
2. Relations and Functions :
(14) Periods

Ordered pairs, Cartesian product of sets. Number of elements in the cartesian product of two finite sets. Cartesian product of the set of reals with itself (upto $R \times R \times R$). Definition of relation, pictorial diagrams,
domain, codomain and range of a relation. Function as a special kind of relation from one set to another. Pictorial representation of a function, domain, co-domain and range of a function. Real valued functions, domain and range of these functions, constant, identity, polynomial, rational, modulus, signum and greatest integer functions, with their graphs. Sum, difference, product and quotients of functions.

3. Trigonometric Functions :

(18) Periods

Positive and negative angles. Measuring angles in radians and in degrees and conversion from one measure to another. Definition of trigonometric functions with the help of unit circle. Truth of the identity $\sin ^{2} x+\cos ^{2} x=1$, for all x. Signs of trigonometric functions. Domain and range of trignometric functions and their graphs. Expressing $\sin (x \pm y)$ and $\cos (x \pm y)$ in terms of $\sin x, \sin y, \cos x$ and $\cos y$. Deducing the identities like the following:
$\tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}, \cot (x \pm y)=\frac{\cot x \cot y \mp 1}{\cot y \pm \cot x}$,
$\sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$,
$\cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$,
$\sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$,
$\cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$.
Identities related to $\sin 2 x, \cos 2 x, \tan 2 x, \sin 3 x, \cos 3 x$ and $\tan 3 x$. General solution of trigonometric equations of the type $\sin \theta=\sin \alpha, \cos \theta=\cos \alpha$ and $\tan \theta=\tan \alpha$. Proof and simple applications of sine and cosine formulae.

Unit-II: Algebra

1. Principle of Mathematical Induction :
(06) Periods

Process of the proof by induction, motivating the applications of the method by looking at natural numbers as the least inductive subset of real numbers. The principle of mathematical induction and simple applications.
2. Complex Numbers and Quadratic Equations :
(10) Periods

Need for complex numbers, especially $\sqrt{-1}$, to be motivated by inability to solve some of the quardratic equations. Algebraic properties of complex numbers. Argand plane and polar representation of complex numbers. Statement of Fundamental Theorem of Algebra, solution of quadratic equations in the complex number system. Square root of a complex number.
3. Linear Inequalities :
(10) Periods

Linear inequalities. Algebraic solutions of linear inequalities in one variable and their representation on the number line. Graphical solution of linear inequalities in two variables. Graphical solution of system of linear inequalities in two variables.
4. Permutations and Combinations :
(12) Periods

Fundamental principle of counting. Factorial n (n !) Permutations and combinations, derivation of formulae and their connections, simple applications.
5. Binomial Theorem :
(08) Periods

History, statement and proof of the binomial theorem for positive integral indices. Pascal's triangle, General and middle term in binomial expansion, simple applications.
6. Sequence and Series :
(10) Periods

Sequence and Series. Arithmetic progression (A.P.) arithmetic mean (A.M.) Geometric progression (G.P.), general term of a G.P., sum of n terms of a G.P., Arithmetic and Geometric series, Infinite G.P. and its sum, geometric mean (G.M.), relation between A.M. and G.M. Sum to n terms
of the special series $\sum_{k=1}^{n} k, \sum_{k=1}^{n} k^{2}$ and $\sum_{k=1}^{n} k^{3}$.

Unit-III: Coordinate Geometry

1. Straight Lines :
(09) Periods

Brief recall of two dimensional geometry from earlier classes. Shifting of origin. Slope of a line and angle between two lines. Various forms of
equations of a line : parallel to axes, point-slope form, slope-intercept form, two-point form, intercept form and normal form. General equation of a line. Equation of family of lines passing through the point of intersection of two lines. Distance of a point from a line.

2. Conic Sections :

(12) Periods

Sections of a cone : circles, ellipse, parabola, hyperbola, a point, a straight line and a pair of intersecting lines as a degenerated case of a conic section. Standard equations and simple properties of parabola, ellipse and hyperbola. Standard equation of a circle.
3. Introduction to Three-Dimensional Geometry
(08) Periods

Coordinate axes and coordinate planes in three dimensions. Coordinates of a point. Distance between two points and section formula.

Unit-IV : Calculus

1. Limits and Derivatives :
(18) Periods

Limit of function introduced as rate of change of distance function and its geometric meaning. Limits of Polynomials and rational function, trigonometric, exponential and logarithmic functions. $\lim _{x \rightarrow 0} \frac{\log _{e}(1+x)}{x}, \lim _{x \rightarrow 0} \frac{e^{x} 1}{x}$. Definition of derivative, relate it to slope of tangent of the curve, derivative of sum, difference, product and quotient of functions. Derivatives of polynomial and trigonometric functions.

Unit-V : Mathematical Reasoning

1. Mathematical Reasoning :
(08) Periods

Mathematically acceptable statements. Connecting words/phrasesconsolidating the understanding of "if and only if (necessary and sufficient) condition", "implies", "and/or", "implied by", "and", "or", "there exists" and their use through variety of examples related to real life and Mathematics. Validating the statements involving the connecting words, difference between contradiction, converse and contrapositive.

Unit-VI : Statistics and Probability

1. Statistics :
(10) Periods

Measures of dispersion, mean deviation, variance and standard deviation of ungrouped/grouped data. Analysis of frequency distributions with equal means but different variances.

2. Probability :

Random experiments; outcomes, sample spaces (set representation). Events; occurrence of events, "not", "and" and "or" events, exhaustive events, mutually exclusive events, Axiomatic (set theoretic) probability, connections with the theories of earlier classes. Probability of an event, probability of "not", "and" and "or" events.

CHAPTER - 1

SETS

KEY POINTS

- A set is a well-defined collection of objects.
- There are two methods of representing a set :-
(a) Roster or Tabular form e.g. :-
natural numbers less than $5=\{1,2,3,4\}$
(b) Set-builder form or Rule method e.g. : Vowels in English alphabet $=\{x: x$ is a vowel in the English alphabet $\}$
- Types of sets :-
(i) Empty set or Null set or void set
(ii) Finite set
(iii) Infinite set
(iv) Singleton set
- Subset :- A set A is said to be a subset of set B if $a \in A \Rightarrow a \in B$, $\forall \mathrm{a} \in \mathrm{A}$
- Equal sets :- Two sets A and B are equal if they have exactly the same elements i.e $A=B$ if $A \subset B$ and $B \subset A$
- Power set : The collection of all subsets of a set A is called power set of A, denoted by $P(A)$ i.e. $P(A)=\{B: B \subset A\}$
- If A is a set with $n(A)=m$ then $n[P(A)]=2^{m}$.
- Equivalent sets: Two finite sets A and B are equivalent, if their cardinal numbers are same i.e., $n(A)=n(B)$.

Types of Intervals

Open Interval $(a, b)=\{x \in R: a<x<b\}$
Closed Interval $[\mathrm{a}, \mathrm{b}]=\{\mathrm{x} \in \mathrm{R}: \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$
Semi open or Semi closed Interval,
$(\mathrm{a}, \mathrm{b}]=\{\mathrm{x} \in \mathrm{R}: \mathrm{a}<\mathrm{x} \leq \mathrm{b}\}$
$[a, b)=\{x \in R: a \leq x<b\}$

- Union of two sets A and B is,
$A \cup B=\{x: x \in A$ or $x \in B\}$

- Intersection of two sets A and B is,
$A \cap B=\{x: x \in A$ and $x \in B\}$

- Disjoint sets : Two sets A and B are said to be disjoint if $A \cap B=\phi$

- Difference of sets A and B is,
$A-B=\{x: x \in A$ and $x \notin B\}$

- Difference of sets B and A is,
$B-A=\{x: x \in B$ and $x \notin A\}$

- Complement of a set A, denoted by A^{\prime} or A^{c} is
$A^{\prime}=A^{c}=U-A=\{x: x \in U$ and $x \notin A\}$

- Properties of complement sets :

1. Complement laws
(i) $A \cup A^{\prime}=U$ (ii) $A \cap A^{\prime}=\phi$ (iii) $\left(A^{\prime}\right)^{\prime}=A$
2. De Morgan's Laws
(i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}(i i)(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

Note : This law can be extended to any number of sets.
3. $\phi^{\prime}=\bigcup$ and $\bigcup^{\prime}=\phi$

Laws of Algebra of sits.
(i) $\mathrm{A} \cup \phi=\mathrm{A}$
(ii) $\mathrm{A} \cap \phi=\phi$

- $A-B=A \cap B^{\prime}$
- Commutative Laws :-
(i) $A \cup B=B \cup A$ (ii) $A \cap B=B \cap A$
- Associative Laws :-
(i) $(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$ (ii) $(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})$
- Distributive Laws :-
(i) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(ii) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
- If $A \subset B$, then $A \cap B=A$ and $A \cup B=B$
- When A and B are disjoint $n(A \cup B)=n(A)+n(B)$
- When A and B are not disjoint
$n(A \cup B)=n(A)+n(B)-n(A \cap B)$
- $n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(A \cap C)$ $+n(A \cap B \cap C)$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

Which of the following are sets? Justify your answer.

1. The collection of all the months of a year beginning with letter M
2. The collection of difficult topics in Mathematics.

Let $A=\{1,3,5,7,9\}$. Insert the appropriate symbol \in or \notin in blank spaces :- (Question- 3,4)
3. $2-A$
4. $5-\mathrm{A}$
5. Write the set $A=\{x: x$ is an integer, $-1 \leq x<4\}$ in roster form
6. List all the elements of the set,

$$
A=\left\{x: x \in Z,-\frac{1}{2}<x<\frac{11}{2}\right\}
$$

7. Write the set $B=\{3,9,27,81\}$ in set-builder form.

Which of the following are empty sets? Justify. (Question- 8,9)
8. $A=\{x: x \in N$ and $3<x<4\}$
9. $B=\left\{x: x \in N\right.$ and $\left.x^{2}=x\right\}$

Which of the following sets are finite or Infinite? Justify. (Question-10,11)
10. The set of all the points on the circumference of a circle.
11. $B=\{x: x \in N$ and x is an even prime number $\}$
12. Are sets $A=\{-2,2\}, B=\left\{x: x \in Z, x^{2}-4=0\right\}$ equal? Why?
13. Write $(-5,9]$ in set-builder form
14. Write $\{x:-3 \leq x<7\}$ as interval.
15. If $A=\{1,3,5\}$, how many elements has $P(A)$?
16. Write all the possible subsets of $A=\{5,6\}$.

If $A=\{2,3,4,5\}, B=\{3,5,6,7\}$ find (Question- 17,18)
17. $A \cup B$
18. $A \cap B$
19. If $A=\{1,2,3,6\}, B=\{1,2,4,8\}$ find $B-A$
20. If $A=\{p, q\}, B=\{p, q, r\}$, is B a superset of A ? Why?
21. Are sets $A=\{1,2,3,4\}, B=\{x: x \in N$ and $5 \leq x \leq 7\}$ disjoint? Why?
22. If X and Y are tw o sets such that $n(X)=19, n(Y)=37$ and $n(X \cap Y)=12$, find $n(X \cup Y)$.
23. Consider the following sets
$\phi, A=\{2,5\}, B=\{1,2,3,4\}, C=\{1,2,3,4,5\}$
Insert the correct symbol cor $\not \subset$ between each pair of sets
(i) $\phi-\mathrm{B}$
(ii) $\mathrm{A}-\mathrm{B}$
(iii) $\mathrm{A}-\mathrm{C}$
(iv) $B-C$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

24. If $\cup=\{1,2,3,4,5,6,7,8,9\}, A=\{2,3,5,7,9\}, B=\{1,2,4,6\}$, verify
(i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
(ii) $B-A=B \cap A^{\prime}=B-(A \cap B)$
25. Let A, B be any two sets. Using properties of sets prove that,
(i) $(A-B) \cup B=A \cup B$
(ii) $(A \cup B)-A=B-A$
[Hint : $A-B=A \cap B^{\prime}$ and use distributive law.]
26. In a group of 800 people, 500 can speak Hindi and 320 can speak English. Find
(i) How many can speak both Hindi and English?
(ii) How many can speak Hindi only?
27. A survey shows that 84% of the Indians like grapes, whereas 45% like pineapple. What percentage of Indians like both grapes and pineapple?
28. In a survey of 450 people, it was found that 110 play cricket, 160 play tennis and 70 play both cricket as well as tennis. How many play neither cricket nor tennis?
29. In a group of students, 225 students know French, 100 know Spanish and 45 know both. Each student knows either French or Spanish. How many students are there in the group?
30. If $A=[-3,5), B=(0,6]$ then find (i) $A-B$, (ii) $A \cup B$

Hots (4 Marks)

31. Show that $n\{P\{P(P(\phi)\}\}=4$

LONG ANSWER TYPE QUESTIONS (6 MARKS)

32. In a survey it is found that 21 people like product $A, 26$ people like product B and 29 like product C. If 14 people like product A and $B, 15$ people like product B and $C, 12$ people like product C and A, and 8 people like all the three products. Find
(i) How many people are surveyed in all?
(ii) How many like product C only?
33. A college awarded 38 medals in football, 15 in basket ball and 20 in cricket. If these medals went to a total of 50 men and only five men got medals in all the three sports, how many received medals in exactly two of the three sports?
34. In a survey of 100 peoples it was found that 28 read magazine $A, 30$ read magazine $B, 42$ read magazine $C, 8$ read magazine A and $B, 10$ read magazine A and $C, 5$ read Magazine B and C and 3 read all three magazines. Find.
(i) How many read none of the three magazine?
(ii) How many read magazine C only?

ANSWERS

1. Set
2. Not a set
3. \notin
4. $A=\{-1,0,1,2,3\}$
5. $B=\left\{x: x=3^{n}, n \in N\right.$ and $\left.1 \leq n \leq 4\right\}$
6. Empty set
7. Non-empty set
8. Infinite set
9. Yes
10. Finite set
11. $\{x: x \in R,-5<x \leq 9\}$
12. $[-3,7)$
13. $\phi,\{5\},\{6\},\{5,6\}$
14. $A \cap B=\{3,5\}$
15. $2^{3}=8$
16. $A \cup B=\{2,3,4,5,6,7\}$
17. $B-A=\{4,8\}$
18. Yes, because A is a subset of B
19. Yes, because $A \cap B=\phi \quad$ 22. $n(X \cup Y)=44$
20. (i) c ; (ii) $\not \subset$; (iii) c ; (iv) c
21. (i) 20 people can speak both Hindi and English
(ii) 480 people can speak Hindi only
22. 29% of the Indians like both grapes and pineapple.
23. Hint : \cup - set of people surveyed

A - set of people who play cricket
B - set of people who play tennis
Number of people who play neither cricket nor tennis

$$
\begin{aligned}
=n\left[(A \cup B)^{\prime}\right] & =n(U)-n(A \cup B) \\
& =450-200 \\
& =250
\end{aligned}
$$

29. There are 280 students in the group.
30. (i) $[-3,0]$; (ii) $[-3,6]$
31. Hint : Let A, B, C denote respectively the set of people who like product A, B, C.
a, b, c, d, e, f, g - Number of elements in bounded region

(i) Total number of Surveyed people $=a+b+c+d+e+f+g=43$
(ii) Number of people who like product C only $=\mathrm{g}=10$
32. 13 people got medals in exactly two of the three sports.

Hint :

$f=5$
$a+b+f+e=38$
$b+c+d+f=15$
$e+d+f+g=20$
$a+b+c+d+e+f+g=50$
we have to find $b+d+e$
34. (i) 20 (ii) 30
[Hint :

A, B, C denote the set of people who like magazine A, B and $C a, b, c$, $\mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}-\mathrm{No}$. of elements in bounded region.
(i) No. of people who read none magazine

$$
=100-(a+b+c+d+e+f+g)=20
$$

(ii) No. of people read C Magazine $=g=30$

CHAPTER - 2

RELATIONS AND FUNCTIONS

KEY POINTS

- Cartesian Product of two non-empty sets A and B is given by,
$A \times B=\{(a, b): a \in A, b \in B\}$
- If $(a, b)=(x, y)$, then $a=x$ and $b=y$
- Relation R from a non-empty set A to a non-empty set B is a subset of $A \times B$.
- Domain of $R=\{a:(a, b) \in R\}$
- Range of $R=\{b:(a, b) \in R\}$
- Co-domain of $R=$ Set B
- Range \subseteq Co-domain
- If $n(A)=p, n(B)=q$ then $n(A \times B)=p q$ and number of relations $=2^{p q}$
- Image : If the element x of A corresponds to $y \in B$ under the function f, then we say that y is image of x under ' f '
$\Rightarrow \quad \mathrm{f}(\mathrm{x})=\mathrm{y}$
- If $f(x)=y$, then x is preimage of y.
- A relation from a set A to a set B is said to be a function if every element of set A has one and only one image in set B.
- $D_{f}=\{x: f(x)$ is defined $\}$

$$
R_{f}=\left\{f(x): x \in D_{f}\right\}
$$

- Identity function, $f: R \rightarrow R ; f(x)=x \forall x \in R$ where R is the set of real numbers.
$D_{f}=R \quad R_{f}=R$

- Constant function, $f: R \rightarrow R ; f(x)=c \forall x \in R$ where c is a constant $D_{f}=R \quad R_{f}=\{c\}$

- Modulus function, $f: R \rightarrow R ; f(x)=|x| \forall x \in R$
$D_{f}=R$
$R_{f}=R^{+}=\{x \in R: x \geq 0\}$

- Signum function, $f: R \rightarrow R ; f(x)=\left\{\begin{array}{l}1, \text { If } x>0 \\ 0, \text { if } x=0 \\ -1, \text { if } x<0\end{array}\right.$
$D_{f}=R$
$R_{f}=\{-1,0,1\}$

- Greatest Integer function, $f: R \rightarrow R ; f(x)=[x], x \in R$ assumes the value of the greatest integer, less than or equal to x
$D_{f}=R \quad R_{f}=Z$

- $f: R \rightarrow R, f(x)=x^{2}$

$$
D_{f}=R \quad R_{f}=[0, \infty)
$$

- $f: R \rightarrow R, f(x)=x^{3}$
$D_{f}=R \quad R_{f}=R$

- Let $f: X \rightarrow R$ and $g: X \rightarrow R$ be any two real functions where $x \subset R$ then $(f \pm g)(x)=f(x) \pm g(x) \forall x \in X$
(fg) $(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \quad \forall \mathrm{x} \in \mathrm{X}$

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad \forall x \in X \text { provided } g(x) \neq 0
$$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Find a and b if $(a-1, b+5)=(2,3)$

If $A=\{1,3,5\}, B=\{2,3\}$ find: (Question-2, 3)
2. $A \times B$
3. $\mathrm{B} \times \mathrm{A}$

Let $A=\{1,2\}, B=\{2,3,4\}, C=\{4,5\}$, find (Question- 4,5)
4. $A \times(B \cap C)$
5. $A \times(B \cup C)$
6. If $P=\{1,3\}, Q=\{2,3,5\}$, find the number of relations from A to B
7. If $A=\{1,2,3,5\}$ and $B=\{4,6,9\}$,
$R=\{(x, y):|x-y|$ is odd, $x \in A, y \in B\}$
Write R in roster form
Which of the following relations are functions. Give reason. (Questions 8 to 10)
8. $R=\{(1,1),(2,2),(3,3),(4,4),(4,5)\}$
9. $R=\{(2,1),(2,2),(2,3),(2,4)\}$
10. $\quad R=\{(1,2),(2,5),(3,8),(4,10),(5,12),(6,12)\}$

Which of the following arrow diagrams represent a function? Why? (Question- 11,12)
11.

12.

Let f and g be two real valued functions, defined by, $f(x)=x^{2}, g(x)=3 x+$ 2, find : (Question 13 to 16)
13. $(f+g)(-2)$
14. $(f-g)(1)$
15. $(\mathrm{fg})(-1)$
16. $\left(\frac{f}{g}\right)(0)$
17. If $f(x)=x^{3}$, find the value of,
$\frac{f(5)-f(1)}{5-1}$
18. Find the domain of the real function,
$f(x)=\sqrt{x^{2}-4}$
19. Find the domain of the function, $f(x)=\frac{x^{2}+2 x+3}{x^{2}-5 x+6}$

Find the range of the following functions, (Question- 20,21)
20. $f(x)=\frac{1}{1-x^{2}}$
21. $f(x)=x^{2}+2$
22. Find the domain of the relation,
$R=\{(x, y): x, y \in Z, x y=4\}$
Find the range of the following relations : (Question-23, 24)
23. $R=\{(a, b): a, b \in N$ and $2 a+b=10\}$
24. $R=\left\{\left(x, \frac{1}{x}\right): x \in z, 0<x<6\right\}$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

25. Let $A=\{1,2,3,4\}, B=\{1,4,9,16,25\}$ and R be a relation defined from A to B as,

$$
R=\left\{(x, y): x \in A, y \in B \text { and } y=x^{2}\right\}
$$

(a) Depict this relation using arrow diagram.
(b) Find domain of R.
(c) Find range of R.
(d) Write co-domain of R.
26. Let $R=\{(x, y): x, y \in N$ and $y=2 x\}$ be a relation on N. Find :
(i) Domain
(ii) Codomain
(iii) Range

Is this relation a function from N to N ?
27. Let $f(x)=\left\{\begin{array}{l}x^{2}, \text { when } 0 \leq x \leq 2 . \\ 2 x, \text { when } 2 \leq x \leq 5\end{array}\right.$
$g(x)=\left\{\begin{array}{l}x^{2}, \text { when } 0 \leq x \leq 3 \\ 2 x, \text { when } 3 \leq x \leq 5\end{array}\right.$
Show that f is a function while g is not a function.
28. Find the domain and range of,

$$
f(x)=|2 x-3|-3
$$

29. Draw the graph of the Greatest Integer function
30. Draw the graph of the Constant function, $f: R \rightarrow R ; f(x)=2 \forall x \in R$. Also find its domain and range.
31. Draw the graph of the function $|x-2|$

ANSWERS

1. $a=3, b=-2$
2. $A \times B=\{(1,2),(1,3),(3,2),(3,3),(5,2),(5,3)\}$
3. $B \times A=\{(2,1),(2,3),(2,5),(3,1),(3,3),(3,5)\}$
4. $\{(1,4),(2,4)\}$
5. $\{(1,2),(1,3),(1,4),(1,5),(2,2),(2,3),(2,4),(2,5)\}$
6. $2^{6}=64$
7. $R=\{(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)\}$
8. Not a function because 4 has two images.
9. Not a function because 2 does not have a unique image.
10. Function
11. Not a function
12. -4
13. 0
14. $(-\infty,-2] \cup[2, \infty)$
15. $(-\infty, 0) \cup[1, \infty)$
16. $\{-4,-2,-1,1,2,4\}$
17. $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}\right\}$
18. Function
19. 0
20. -1
21. 31
22. $R-\{2,3\}$
23. $[2, \infty)$
24. $\{2,4,6,8\}$
25.

(b) $\{1,2,3,4\}$
(c) $\{1,4,9,16\}$
(d) $\{1,4,9,16,25\}$
26. (i) N
(ii) N
(iii) Set of even natural numbers
yes, R is a function from N to N .
28. Domain is R

Range is $[-3, \infty)$
30. Domain $=R$

Range $=\{2\}$

CHAPTER - 3

TRIGONOMETRIC FUNCTIONS

KEY POINTS

- A radian is an angle subtended at the centre of a circle by an arc whose length is equal to the radius of the circle. We denote 1 radian by 1^{c}.
- π radian $=180$ degree

1 radian $=\frac{180}{\pi}$ degree

1 degree $=\frac{\pi}{180}$ radian

- If an arc of length l makes an angle θ radian at the centre of a circle of radius r, we have

$$
\theta=\frac{l}{r}
$$

Function	Domain	Range
$\sin x$	R	$[-1,1]$
$\cos x$	R	$[-1,1]$
$\tan x$	$R-\left\{(2 n+1) \frac{\pi}{2} ; n \in z\right\}$	R
$\operatorname{Cosec} x$	$R-\{n \pi ; n \in z\}$	$R-(-1,1)$
$\operatorname{Sec} x$	$R-\left\{(2 n+1) \frac{\pi}{2} ; n \in z\right\}$	$R-(-1,1)$
$\cot x$	$R-\{n \pi, n \in z\}$	R

Some Standard Results

- $\quad \sin (x+y)=\sin x \cos y+\cos x \sin y$
$\cos (x+y)=\cos x \cos y-\sin x \sin y$
$\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \cdot \tan y}$
$\cot (x+y)=\frac{\cot x \cdot \cot y-1}{\cot y+\cot x}$
- $\quad \sin (x-y)=\sin x \cos y-\cos x \sin y$
$\cos (x-y)=\cos x \cos y+\sin x \sin y$
$\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \cdot \tan y}$
$\cot (x-y)=\frac{\cot x \cdot \cot y+1}{\cot y-\cot x}$
- $\tan (x+y+z)=\frac{\tan x+\tan y+\tan z-\tan x \tan y \tan z}{1-\tan x \tan y-\tan y \cdot \tan z-\tan z \tan x}$
- $2 \sin x \cos y=\sin (x+y)+\sin (x-y)$
$2 \cos x \sin y=\sin (x+y)-\sin (x-y)$
$2 \cos x \cos y=\cos (x+y)+\cos (x-y)$
$2 \sin x \sin y=\cos (x-y)-\cos (x+y)$
- $\quad \sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$
$\sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$
$\cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$
$\cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$
- $\sin 2 x=2 \sin x \cos x=\frac{2 \tan x}{1+\tan ^{2} x}$
- $\cos 2 x=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x=\frac{1-\tan ^{2} x}{1+\tan ^{2} x}$
- $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
- $\quad \sin 3 x=3 \sin x-4 \sin ^{3} x$
- $\cos 3 x=4 \cos ^{3} x-3 \cos x$
- $\tan 3 x=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}$
- $\quad \sin (x+y) \sin (x-y)=\sin ^{2} x-\sin ^{2} y$
$=\cos ^{2} y-\cos ^{2} x$
- $\cos (x+y) \cos (x-y)=\cos ^{2} x-\sin ^{2} y$
$=\cos ^{2} y-\sin ^{2} x$
- Principal solutions - The solutions of a trigonometric equation for which $0 \leq x<2 \pi$ are called its principal solutions.
- General solution - A solution of a trigonometric equation, generalised by means of periodicity, is known as the general solution.

General solutions of trigonometric equations :
$\sin \theta=0 \Rightarrow \theta=\mathrm{n} \pi, \mathrm{n} \in \mathrm{z}$
$\cos \theta=0 \Rightarrow \theta=(2 n+1) \frac{\pi}{2}, n \in z$
$\tan \theta=0 \Rightarrow \theta=\mathrm{n} \pi, \mathrm{n} \in \mathrm{z}$
$\sin \theta=\sin \alpha \Rightarrow \theta=\mathrm{n} \pi+(-1)^{\mathrm{n}} \alpha, \mathrm{n} \in \mathrm{z}$
$\cos \theta=\cos \alpha \Rightarrow \theta=2 n \pi \pm \alpha, n \in z$
$\tan \theta=\tan \alpha \Rightarrow \theta=\mathrm{n} \pi+\alpha, \mathrm{n} \in \mathrm{z}$

- Law of sines or sine formula

The lengths of sides of a triangle are proportional to the sines of the angles opposite to them i.e.,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

- Law of cosines or cosine formula

In any $\triangle A B C$

$$
\begin{aligned}
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \cos B=\frac{c^{2}+a^{2}-b^{2}}{2 c a} \\
& \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{aligned}
$$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Find the radian measure corresponding to
(i) $5^{\circ} 37^{\prime} 30^{\prime \prime}$;
(ii) $-37^{\circ} 30^{\prime}$
2. Find the degree measure corresponding to (i) $\left(\frac{11}{16}\right)^{\mathrm{c}}$; (ii) -4°
3. Find the length of an arc of a circle of radius 5 cm subtending a central angle measuring 15°
4. Find the value of $\tan \frac{19 \pi}{3}$
5. Find the value of (i) $\sin \left(-1125^{\circ}\right)$; (ii) $\cos \left(-2070^{\circ}\right)$
6. Find the value of (i) $\tan 15^{\circ}$; (ii) $\sin 75^{\circ}$
7. If $\sin A=\frac{3}{5}$ and $\frac{\pi}{2}<A<\pi$, find $\cos A$
8. If $\tan A=\frac{a}{a+1}$ and $\tan B=\frac{1}{2 a+1}$ then find the value of $A+B$.
9. Express $\sin 12 \theta+\sin 4 \theta$ as the product of sines and cosines.
10. Express $2 \cos 4 x \sin 2 x$ as an algebraic sum of sines or cosines.
11. Write the range of $\cos \theta$
12. What is domain of $\sec \theta$?
13. Find the principal solutions of (i) $\operatorname{cosec} x=-1$; (ii) $\cos x=1$.
14. Write the general solution of $\sin \left(x+\frac{\pi}{12}\right)=0$
15. If $\sin x=\frac{\sqrt{5}}{3}$ and $0<x<\frac{\pi}{2}$ find the value of $\cos 2 x$
16. If $\cos x=\frac{-1}{3}$ and x lies in quadrant III, find the value of $\sin \frac{x}{2}$
17. Evaluate : $2 \sin 75^{\circ} \sin 15^{\circ}$
18. If $\tan \alpha=\frac{1}{7}$, then find $\cos 2 \alpha$.
19. Evaluate : $\sin (\pi+x) \sin (\pi-x) \operatorname{cosec}^{2} x$
20. What is sign of $\cos \frac{x}{2}-\sin \frac{x}{2}$ when
(i) $0<x<\pi / 2$
(ii) $0<x<\pi$
21. What is maximum value of $3-7 \cos 5 x$?
22. Find the range of $f(x)=\sin \pi x$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

23. A horse is tied to a post by a rope. If the horse moves along a circular path, always keeping the rope tight and describes 88 metres when it traces 72° at the centre, find the length of the rope.
24. If the angles of a triangle are in the ratio $3: 4: 5$, find the smallest angle in degrees and the greatest angle in radians.
25. If $\sin x=\frac{12}{13}$ and x lies in the second quadrant, show that $\sec x+\tan x=-5$
26. If $\sec x=\sqrt{2}$ and $\frac{3 \pi}{2}<x<2 \pi$ find the value of $\frac{1+\tan x+\operatorname{cosec} x}{1+\cot x-\operatorname{cosec} x}$.
27. Prove that $\tan 50^{\circ}=\tan 40^{\circ}+2 \tan 10^{\circ}$
28. If $\cot \alpha=\frac{1}{2}$, $\sec \beta=\frac{-5}{3}$ where $\pi<\alpha<\frac{3 \pi}{2}$ and $\frac{\pi}{2}<\beta<\pi$, find the value of $\tan (\alpha+\beta)$
29. $\tan 13 x=\tan 4 x+\tan 9 x+\tan 4 x \tan 9 x \tan 13 x$

Prove the following Identities

30. $\frac{\tan 5 \theta+\tan 3 \theta}{\tan 5 \theta-\tan 3 \theta}=4 \cos 2 \theta \cos 4 \theta$
31. $\frac{\cos x+\sin x}{\cos x-\sin x}-\frac{\cos x-\sin x}{\cos x+\sin x}=2 \tan 2 x$
32. $\frac{\cos 4 x \sin 3 x-\cos 2 x \sin x}{\sin 4 x \sin x+\cos 6 x \cos x}=\tan 2 x$
33. $\frac{1+\sin \theta-\cos \theta}{1+\sin \theta+\cos \theta}=\tan \frac{\theta}{2}$
34. $\tan \alpha \cdot \tan \left(60^{\circ}-\alpha\right) \cdot \tan \left(60^{\circ}+\alpha\right)=\tan 3 \alpha$
35. Show that $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}=\frac{1}{8}$
36. Show that $\sqrt{2+\sqrt{2+2 \cos 4 \theta}}=2 \cos \theta$
37. Pr ove that $\frac{\cos x}{1-\sin x}=\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)$
38. $\cos 10^{\circ}+\cos 110^{\circ}+\cos 130^{\circ}=0$
39. $\frac{\sin (x+y)-2 \sin x+\sin (x-y)}{\cos (x+y)-2 \cos x+\cos (x-y)}=\tan x$
40. $\sin x+\sin 2 x+\sin 4 x+\sin 5 x=4 \cos \frac{x}{2} \cos \frac{3 x}{2} \sin (3 x)$.
41. $\frac{\sec 8 x-1}{\sec 4 x-1}=\frac{\tan 8 x}{\tan 2 x}$.
42. Evaluate $\cos 36^{\circ}$.
43. Draw the graph of cosx in $[0,2 \pi]$.

Find the general solution of the following equations (Q.No. 44 to Q. No. 55)
44. If $\frac{\sin (x+y)}{\sin (x-y)}=\frac{a+b}{a-b}$
then prove that $\frac{\tan x}{\tan y}=\frac{a}{b}$
[Hint : By applying Companando and Dividendo

$$
\left.\frac{A}{B}=\frac{C}{D} \Rightarrow \frac{A+B}{A-B}=\frac{C+D}{C-D}\right]
$$

45. $\sin 7 x=\sin 3 x$.
46. $\sqrt{3} \cos x-\sin x=1$.
47. $3 \tan x+\cot x=5 \operatorname{cosec} x$.
48. $\tan x+\tan 2 x+\sqrt{ } 3 \tan x \tan 2 x=\sqrt{ } 3$.
49. $\tan x+\sec x=\sqrt{3}$.
50. In any triangle $A B C$, prove that

$$
a(\sin B-\sin C)+b(\sin C-\sin A)+c(\sin A-\sin B)=0 .
$$

51. In any triangle $A B C$, prove that (Q. 51 to $Q .55$)

$$
(a-b)^{2} \cos ^{2} \frac{c}{2}+(a+b)^{2} \sin ^{2} \frac{c}{2}=c^{2} .
$$

52. $\left(b^{2}-c^{2}\right) \cot A+\left(c^{2}-a^{2}\right) \cot B+\left(a^{2}-b^{2}\right) \cot c=0$.
53. $a=b \cos C+c \cos B$
54. $\frac{a+b}{c}=\frac{\cos \frac{A-B}{2}}{\sin \frac{C}{2}}$.
55. If $\cos A=\frac{\sin B}{2 \sin C}$ then prove that the triangle is isoscles.

LONG ANSWER TYPE QUESTIONS (6 MARKS)

56. Prove that

$$
\cos A \cos 2 A \cos 4 A \cos 8 A=\frac{\sin 16 A}{16 \sin A}
$$

57. Prove that $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}=\frac{1}{16}$
58. Find the general solution of

$$
\sin 2 x+\sin 4 x+\sin 6 x=0
$$

59. Find the general solution of

$$
\cos \theta \cos 2 \theta \cos 3 \theta=\frac{1}{4}
$$

60. Draw the graph of $\tan \mathrm{x}$ in $\left(\frac{-3 \pi}{2}, \frac{3 \pi}{2}\right)$
61. In any triangle $A B C$, prove that

$$
\frac{b^{2}-c^{2}}{a^{2}} \sin 2 A+\frac{c^{2}-a^{2}}{b^{2}} \sin 2 B+\frac{\left(a^{2}-b^{2}\right)}{c^{2}} \sin 2 C=0
$$

62. Prove that

$$
4 \sin \alpha \sin \left(\alpha+\frac{\pi}{3}\right) \sin \left(\alpha+\frac{2 \pi}{3}\right)=\sin 3 \alpha
$$

63*. Prove that

$$
\sin ^{3} x+\sin ^{3}\left(\frac{2 \pi}{3}+x\right)+\sin ^{3}\left(\frac{4 \pi}{3}+x\right)=-\frac{3}{4} \sin 3 x
$$

ANSWERS

1. (i) $\left(\frac{\pi}{32}\right)^{\mathrm{c}}$; (ii) $-\left(\frac{5 \pi}{24}\right)^{\mathrm{c}}$
2. (i) $39^{\circ} 22^{\prime} 30^{\prime \prime}$;
(ii) $-229^{\circ} 5^{\prime} 27^{\prime \prime}$
3. $\frac{5 \pi}{12} \mathrm{~cm}$
4. $\sqrt{3}$
5. (i) $\frac{-1}{\sqrt{2}}$; (ii) 0
6. (i) $2-\sqrt{3}$;
(ii) $\frac{\sqrt{6}-\sqrt{2}}{4}$
7. $\frac{-4}{5}$
8. 45°
9. $2 \sin 8 \theta \cos 4 \theta$
10. $\sin 6 x-\sin 2 x$
11. $[-1,1]$
12. $R-\left\{(2 n+1) \frac{\pi}{2} ; n \in z\right\}$
13. (i) $\frac{3 \pi}{2}$;
(ii) $0, \pi$
14. $\mathrm{n} \pi-\frac{\pi}{12}$
15. $-\frac{1}{9}$
16. $\frac{\sqrt{6}}{3}$
17. $\frac{1}{2}$
18. -1
19. 10
20. 70 m
21. -1
22. $\quad(2 n+1) \frac{\pi}{10}, \frac{n \pi}{2}, n \in z$
23. $2 \mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{z}$
24. $2 \mathrm{n} \pi+\frac{\pi}{6}$
25. $(2 \mathrm{n}+1) \frac{\pi}{8}, \mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{z}$
26. $\frac{24}{25}$
27. (i) Positive; (ii) Negative
28. $[-1,1]$
29. $45^{\circ}, \frac{5 \pi}{12}$ radians
30. $\frac{2}{11}$
31. $2 \mathrm{n} \pi \pm \frac{\pi}{3}-\frac{\pi}{6}, \mathrm{n} \in \mathrm{z}$
32. $\frac{\mathrm{n} \pi}{3}+\frac{\pi}{9}$
33. $\frac{\mathrm{n} \pi}{4}, \mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{z}$

CHAPTER - 4

PRINCIPLE OF MATHEMATICAL INDUCTION

KEY POINTS

- Induction and deduction are two basic processes of reasoning.
- Deduction is the application of a general case to a particular case. In contrast to deduction, induction is process of reasoning from particular to general.
- Principle of Mathematical Induction :

Let $P(n)$ be any statement involving natural number n such that
(i) $P(1)$ is true, and
(ii) If $P(k)$ is true implies that $P(k+1)$ is also true for some natural number k
then $\mathrm{P}(\mathrm{n})$ is true $\forall \mathrm{n} \in \mathrm{N}$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

Using the principle of mathematical induction prove the following for all $n \in N$:

1. If $P(n): 1+4+7+\ldots .+(3 n-2)=\frac{1}{2} n(3 n-1)$

Verify $P(n)$ for $n=1,2,10$
2. Given $P(n): 1+2+3+\ldots . .+n<\frac{1}{8}(2 n+1)^{2}$

Verify $\mathrm{P}(\mathrm{n})$ for $\mathrm{n}=1,2$
3. $P(n) " 3^{2 n+2}-8 n-9$ is a multiple of 64

Verify $P(n)$ for $n=1$ and 2 .
4. $3.6+6.9+9.12+$ \qquad $+3 n(3 n+3)=3 n(n+1)(n+2)$
5. $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)--\left(1-\frac{1}{n+1}\right)=\frac{1}{n+1}$
6. $\mathrm{n}^{2}+\mathrm{n}$ is an even natural number.
7. $2^{3 n}-1$ is divisible by 7
8. $3^{2 n}$ when divided by 8 leaves the remainder 1.
9. $4^{n}+15 n-1$ is divisible by 9
10. $n^{3}+(n+1)^{3}+(n+2)^{3}$ is a multiple of 9 .
11. $x^{2 n-1}-1$ is divisible by $x-1, x \neq 1$
12. $3^{n}>n$
13. If x and y are any two distinct integers then $x^{n}-y^{n}$ is divisible by ($x-y$)
14. $n<2^{n}$
15. $a+(a+d)+(a+2 d)+$ \qquad $+[a+(n-1) d]=\frac{n}{2}[2 a+(n-1) d]$
16. $3 x+6 x+9 x+$ \qquad to n terms $=\frac{3}{2} n(n+1) x$
17. $11^{n+2}+12^{2 n+1}$ is divisible by 133 .
18. Using induction prove that

$$
\sin x+\sin 2 x+\sin 3 x+\ldots+\sin n x=\frac{\sin \left(\frac{n+1}{2} x\right) \sin \frac{n x}{2}}{\sin \frac{x}{2}}
$$

19. Using PMI, Prove

$$
7+77+777+\ldots .+ \text { to } n \text { terms }=\frac{7}{81}\left(10^{n+1}-9 n-10\right) \forall n \in N
$$

CHAPTER - 5

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

KEY POINTS

- The imaginary number $\sqrt{-1}=\mathrm{i}$, is called iota
- For any integer $k, i^{4 k}=1, i^{4 k+1}=i, i^{4 k+2}=-1, i^{4 k+3}=-i$
- $\sqrt{a} \times \sqrt{b} \neq \sqrt{a b}$ if both a and b are negative real numbers
- A number of the form $z=a+i b$, where $a, b \in R$ is called a complex number.
a is called the real part of z, denoted by $\operatorname{Re}(z)$ and b is called the imaginary part of z, denoted by $\operatorname{Im}(z)$
- $a+i b=c+i d$ if $a=c$, and $b=d$
- $\quad z_{1}=a+i b, z_{2}=c+i d$.

In general, we cannot compare and say that $z_{1}>z_{2}$ or $z_{1}<z_{2}$
but if $b, d=0$ and $a>c$ then $z_{1}>z_{2}$
i.e. we can compare two complex numbers only if they are purely real.

- $0+\mathrm{i} 0$ is additive identity of a complex number.
- $-\mathrm{z}=-\mathrm{a}+\mathrm{i}(-\mathrm{b})$ is called the Additive Inverse or negative of $\mathrm{z}=\mathrm{a}+\mathrm{ib}$
- $1+\mathrm{i} 0$ is multiplicative identity of complex number.
- $\bar{z}=a-i b$ is called the conjugate of $z=a+i b$
$z^{-1}=\frac{1}{z}=\frac{a-i b}{a^{2}+b^{2}}=\frac{\bar{z}}{|z|^{2}}$ is called the multiplicative Inverse of $z=a+i b(a \neq 0, b \neq 0)$
- The coordinate plane that represents the complex numbers is called the complex plane or the Argand plane
- Polar form of $z=a+i b$ is,
$z=r(\cos \theta+i \sin \theta)$ where $r=\sqrt{a^{2}+b^{2}}=|z|$ is called the modulus of z,
θ is called the argument or amplitude of z.
- The value of θ such that, $-\pi<\theta \leq \pi$ is called the principle argument of z.
- $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
- $\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$
$\bullet\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|},\left|z^{n}\right|=|z|^{n},|z|=|\bar{z}|=|-z|=|-\overline{\mathbf{z}}|, \quad z \bar{z}=|z|^{2}$
- $\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
- $\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$
- If $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
then $\quad z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]
$$

- For the quadratic equation $a x^{2}+b x+c=0, a, b, c \in R, a \neq 0$, if $b^{2}-4 a c<0$ then it will have complex roots given by,

$$
x=\frac{-b \pm i \sqrt{4 a c-b^{2}}}{2 a}
$$

- $\sqrt{a+i b}$ is called square root of $z=a+i b$
$\sqrt{a+i b}=x+i y$
squaring both sides we get

$$
\begin{aligned}
& a+i b=x^{2}-y^{2}+2 i(x y) \\
& x^{2}-y^{2}=a, 2 x y=b . \text { Solving these we get } x \text { and } y .
\end{aligned}
$$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Evaluate :
(i) $\sqrt{-16}+3 \sqrt{-25}+\sqrt{-36}-\sqrt{-625}$
(ii) $\mathrm{i} \sqrt{-16}+\mathrm{i} \sqrt{-25}+\sqrt{49}-\mathrm{i} \sqrt{-49}+14$
(iii) $(-\sqrt{-1})^{31}$
(iv) $\mathrm{i}^{35}+\frac{1}{\mathrm{i}^{35}}$
2. Find x and y if $3 x+(2 y-3)$ is equal to $2+4 i$
3. Find additive inverse of $6 \mathrm{i}-\mathrm{i} \sqrt{-49}$
4. Find multiplicative inverse of $2+\mathrm{i}$
5. Find modulus of $\sqrt{-25}+7$
6. If $z_{1}=2+4 i, z_{2}=3-5 i$ the find
(i) $R_{e}\left(z_{1} z_{2}\right)$
(ii) $I_{m}\left(z_{1} z_{2}\right)$
(iii) $R_{e}\left(z_{1}-z_{2}\right)$
(iv) $I_{m}\left(z_{1}+z_{2}\right)$
7. Express $\frac{1}{1+i}$ in the form of $a+i b$.
8. If modulus of z is 2 and argument of z is $\frac{5 \pi}{6}$ then write z in form of $a+i b$.
9. If $z_{1}=\sqrt{2}\left(\cos 30^{\circ}+i \sin 30^{\circ}\right), z_{2}=\sqrt{3}\left(\cos 60+i \sin 30^{\circ}\right)$

Find $R_{e}\left(z_{1} z_{2}\right)$
10. Find the value of $(-\sqrt{-1})^{4 \mathrm{n}} \mathrm{n}$ is any positive integer.
11. Find conjugate of i^{7}
12. Find the solution of equation $x^{2}+3=0$ in complex numbers.
13. Represent $\sin \frac{\pi}{3}+i \cos \frac{\pi}{3}$ in polar form
14. Represent in $(a+i b) 3\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)$
15. If $z_{1}=\cos 30^{\circ}+i \sin 30^{\circ}$

$$
z_{2}=\cos 60^{\circ}+i \sin 60^{\circ}
$$

then find (i) $\left|\frac{z_{1}}{z_{2}}\right|$; (ii) $\left|z_{1} z_{2}\right|$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

16. For Complex numbers $z_{1}=-1+i, z_{2}=3-2 i$
show that,

$$
\operatorname{Im}\left(z_{1} z_{2}\right)=\operatorname{Re}\left(z_{1}\right) \operatorname{Im}\left(z_{2}\right)+\operatorname{Im}\left(z_{1}\right) \operatorname{Re}\left(z_{2}\right)
$$

17. If $x+i y=\sqrt{\frac{1+i}{1-i}}$, prove that $x^{2}+y^{2}=1$
18. Find real value of θ such that,

$$
\frac{1+i \cos \theta}{1-2 i \cos \theta} \text { is a real number }
$$

19. If $\left|\frac{z-5 i}{z+5 i}\right|=1$, show that z is a real number.
20. Find the value of x and y if

$$
x^{2}-7 x+9 y i=y^{2} i+20 i-12
$$

21. Express in the form of $\mathbf{a}+\mathrm{ib}$

$$
\frac{(1+i)^{3}}{4+3 i}
$$

22. Convert the following in polar form :
(i) $-3 \sqrt{2}+3 \sqrt{2} i$
(ii) $\frac{(\sqrt{3}-1)-(\sqrt{3}+1) \text { i }}{2 \sqrt{2}}$
(iii) $\mathrm{i}(1+\mathrm{i})$
(iv) $\frac{5-i}{2-3 i}$
23. If $(x+i y)^{\frac{1}{3}}=a+i b$, prove that, $\left(\frac{x}{a}+\frac{y}{b}\right)=4\left(a^{2}-b^{2}\right)$
24. For complex numbers $z_{1}=6+3 i, z_{2}=3-i$ find $\frac{z_{1}}{z_{2}}$
25. If $\left(\frac{2+2 i}{2-2 i}\right)^{n}=1$, find the least positive integral value of n.
26. Solve
(i) $\mathrm{ix}^{2}+4 \mathrm{x}-4 \mathrm{i}=0$
(ii) $x^{2}-(2+i) x-(1-7 i)=0$
(iii) $2 x^{2}+3 i x+2=0$
(iv) $x^{2}-2 x+\frac{3}{2}=0$
27. Find square root of the following complex number
(i) $-7+24 i$
(ii) $-3-4 \mathrm{i}$
(iii) $-15-8 \mathrm{i}$
(iv) $7-30 \sqrt{-2}$

LONG ANSWER TYPE QUESTIONS (6 MARKS)

28. If z_{1}, z_{2} are complex numbers such that, $\left|\frac{z_{1}-3 z_{2}}{3-z_{1} \bar{z}_{2}}\right|=1$ and $\left|z_{2}\right| \neq 1$ then find $\left|z_{1}\right|$
29. If $x=-1+i$ then find the value of $x^{4}+4 x^{3}+4 x^{2}+2$
*30. If $z=x+i y$ and $w=\frac{1-i z}{z-i}$ show that if $|w|=1$ then z is purely real.
*31. Prove by Principle of Mathematical Induction $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$
if n is any natural number.

ANSWERS

1. (i) 0 ;
(ii) 19 ;
(iii) i ;
(iv) 0
2. $x=\frac{2}{3}, y=\frac{7}{2}$
3. $-7-6 i$
4. $\frac{2}{\sqrt{3}}-\frac{i}{\sqrt{3}}$
5. $\sqrt{74}$
6. (i) 26 ;
(ii) 2 ;
(iii) -1 ;
(iv) -1
7. $\frac{1}{2}-\frac{i}{\sqrt{2}}$
8. $-\sqrt{3}+1 \mathrm{i}$
9. 0
10. 1
11. i
12. $\pm \sqrt{3} i$
13. $\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}$
14. $-3 i$
15. (i) 1 ;
(ii) 1;
16. $\quad \theta=(2 n+1) \frac{\pi}{2}$
17. $x=4,3 ; \quad y=5,4$
18. $\frac{-2}{25}+\frac{14}{25} \mathrm{i}$
19. (i) $6\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$; \quad (ii) $1\left[\cos \left(\frac{-5 \pi}{12}\right)+i \sin \left(\frac{-5 \pi}{12}\right)\right]$;
(iii) $\sqrt{2}\left[\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right]$;
(iv) $\sqrt{2}\left[\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right]$
20. $\frac{z_{1}}{z_{2}}=\frac{3(1+i)}{2}$
21. $\mathrm{n}=4$
22. (i) $2 \mathrm{i}, 2 \mathrm{i}$
(ii) $3-\mathrm{i},-1+2 \mathrm{i}$
(iii) $\frac{1}{2} \mathrm{i},-2 \mathrm{i}$
(iv) $\frac{2 \pm \sqrt{2} i}{2}$
23. (i) $\pm(3+4 i)$
(ii) $\pm(1-2 i)$
(iii) $\pm(1-4 i)$
(iv) $\pm(5-3 \sqrt{ } 2 \mathrm{i})$
24. $\left|z_{1}\right|=3$
25. 6

CHAPTER - 6

LINEAR INEQUALITIES

KEY POINTS

- Two real numbers or two algebraic expressions related by the symbol ' $<$ ', '>', ' \leq ' or ' \geq ' form an inequality.
- The inequalities of the form $a x+b>0, a x+b<0, a x+b \geq 0$, $a x+b \leq 0 ; a \neq 0$ are called linear inequalities in one variable x
- The inequalities of the form $a x+b y+c>0$, $a x+b y+c<0$, $a x+b y+c \geq 0, a x+b y+c \leq 0, a \neq 0, b \neq 0$ are called linear inequalities in two variables x and y
- Rules for solving inequalities:
(i) $\mathrm{a} \geq \mathrm{b}$ then $\mathrm{a} \pm \mathrm{k} \geq \mathrm{b} \pm \mathrm{k}$
where k is any real number.
(ii) but if $\mathrm{a} \geq \mathrm{b}$ then ka is not always $\geq \mathrm{kb}$.

If $k>0$ (i.e. positive) then $a \geq b \Rightarrow k a \geq k b$
If $k<0$ (i.e. negative) then $a \geq b \Rightarrow k a \leq k b$

- Solution Set : A solution of an inequality is a number which when substituted for the variable, makes the inequality true. The set of all solutions of an inequality is called the solution set of the inequality.
- The graph of the inequality $\mathrm{ax}+\mathrm{by}>\mathrm{c}$ is one of the half planes and is called the solution region
- When the inequality involves the sign \leq or \geq then the points on the line are included in the solution region but if it has the sign < or > then the points on the line are not included in the solution region and it has to be drawn as a dotted line.

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Solve $5 x<24$ when $x \in N$
2. Solve $3 x<11$ when $x \in Z$
3. Solve $3-2 x<9$ when $x \in R$
4. Show the graph of the solution of $2 x-3>x-5$ on number line.
5. Solve $5 x-8 \geq 8$ graphically
6. Solve $\frac{1}{x-2} \leq 0$
7. Solve $0<\frac{-x}{3}<1$

Write the solution in the form of intervals for $x \in R$. for Questions 8 to 10
8. $\frac{2}{x-3}<0$
9. $-3 \leq-3 x+2<4$
10. $3+2 x>-4-3 x$
11. Draw the graph of the solution set of $x+y \geq 4$.
12. Draw the graph of the solution set of $x \leq y$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

Solve the inequalities for real \mathbf{x}
13. $\frac{2 x-3}{4}+9 \geq 3+\frac{4 x}{3}$
14. $\frac{2 x+3}{4}-3<\frac{x-4}{3}-2$
15. $-5 \leq \frac{2-3 x}{4} \leq 9$
16. $|x-2| \geq 5$
17. $|4-x|+1<3$
18. $\frac{3}{x-2}<1$
19. $\frac{\mathrm{x}}{\mathrm{x}-5}>\frac{1}{2}$
20. $\frac{x+3}{x-2}>0$
21. $x+2 \leq 5,3 x-4>-2+x$
22. $3 x-7>2(x-6), 6-x>11-2 x$
23. The water acidity in a pool is considered normal when the average PH reading of three daily measurements is between 7.2 and 7.8. If the first two PH readings are 7.48 and 7.85 , find the range of PH value for the third reading that will result in the acidity level being normal.
24. While drilling a hole in the earth, it was found that the temperature $\left(\mathrm{T}^{\circ} \mathrm{C}\right)$ at $x \mathrm{~km}$ below the surface of the earth was given by
$T=30+25(x-3)$, when $3 \leq x \leq 15$.
Between which depths will the temperature be between $200^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$?
Solve the following systems of inequalities graphically : (Questions 25, 26)
25. $x+y>6,2 x-y>0$
26. $3 x+4 y \leq 60, x+3 y \leq 30, x \geq 0, y \geq 0$

LONG ANSWER TYPE QUESTIONS (6 MARKS)

Solve the system of inequalities for real x

27. $\frac{5 x}{4}+\frac{3 x}{8}>\frac{39}{8}$ and

$$
\frac{2 x-1}{12}-\frac{x-1}{3}<\frac{3 x+1}{4}
$$

Solve the following system of inequalities graphically (Questions 28 to 30)
28. $3 x+2 y \leq 24, x+2 y \leq 16, x+y \leq 10, x \geq 0, y \geq 0$
29. $2 x+y \geq 4, x+y \leq 3,2 x-3 y \leq 6$
30. $x+2 y \leq 2000, x+y \leq 1500, y \leq 600, x \geq 0, y \geq 0$

ANSWERS

1. $\{1,2,3,4\}$
2. $\mathrm{x}>-3$
3. $-3<x<0$
4. $\left(\frac{-2}{3}, \frac{5}{3}\right]$
5. $\{\ldots \ldots,-2,-1,0,1,2,3\}$
6. $x<2$
7. $(-\infty, 3)$
8. $\left(\frac{-7}{5}, \infty\right)$
9.

13. $\left(-\infty, \frac{63}{10}\right]$
15. $\left[\frac{-34}{3}, \frac{22}{3}\right]$
17. $(2,6)$
19. $(-\infty,-5) \cup(5, \infty)$
21. $(1,3]$
23. Between 6.27 and 8.07
14. $\left(-\infty, \frac{-13}{2}\right)$
16. $(-\infty,-3] \cup[7, \infty)$
18. $(-\infty, 2) \cup(5, \infty)$
20. $(-\infty,-3) \cup(2, \infty)$
22. $(5, \infty)$
24. Between 9.8 m and 13.8 m
27. $(3, \infty)$

CHAPTER - 7

PERMUTATIONS AND COMBINATIONS

KEY POINTS

- When a job (task) is performed in different ways then each way is called the permutation.
- Fundamental Principle of Counting : If a job can be performed in m different ways and for each such way, second job can be done in n different ways, then the two jobs (in order) can be completed in $\mathrm{m} \times \mathrm{n}$ ways.
- Fundamental Principle of Addition : If there are two events such that they can be performed independently in m and n ways respectively, then either of the two events can be performed in $(m+n)$ ways.
- The number of arrangements (permutations) of n different things taken r at a time is ${ }^{n} P_{r}$ or $P(n, r)$
- The number of selections (Combinations) of n different things taken r at a time is ${ }^{n} C_{r}$.
- ${ }^{n} P_{r}=\frac{n!}{(n-r)!}, \quad{ }^{n} C_{r}=\frac{n!}{(n-r)!r!}$
- No. of permutations of n things, taken all at a time, of which p are alike of one kind, q are alike of $2^{\text {nd }}$ kind such that $p+q=n$, is $\frac{n!}{p!q!}$
- $0!=1,{ }^{n} C_{o}={ }^{n} C_{n}=1$
- ${ }^{n} P_{r}=r!{ }^{n} C_{r}$
- ${ }^{n} C_{r}={ }^{n} C_{n-r}$
- ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
- ${ }^{n} C_{a}={ }^{n} C_{b}$ if $a+b=n$ or $a=b$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Using the digits $1,2,3,4,5$ how many 3 digit numbers (without repeating the digits) can be made?
2. In how many ways 7 pictures can be hanged on 9 pegs?
3. Ten buses are plying between two places A and B. In how many ways a person can travel from A to B and come back?
4. There are 10 points on a circle. By joining them how many chords can be drawn?
5. There are 10 non collinear points in a plane. By joining them how many triangles can be made?
6. If $\frac{1}{6!}+\frac{1}{8!}=\frac{x}{9!}$ find x
7. If ${ }^{n} P_{4}:{ }^{n} P_{2}=12$, find n.
8. How many different words (with or without meaning) can be made using all the vowels at a time?
9. Using 1, 2, 3, 4, 5 how many numbers greater than 10000 can be made? (Repetition not allowed)
10. If ${ }^{\mathrm{n}} \mathrm{C}_{12}={ }^{\mathrm{n}} \mathrm{C}_{13}$ then find the value of ${ }^{25} \mathrm{C}_{\mathrm{n}}$.
11. In how many ways 4 boys can be choosen from 7 boys to make a committee?
12. How many different words can be formed by using all the letters of word SCHOOL?
13. In how many ways can the letters of the word PENCIL be arranged so that I is always next to L .

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

14. In how many ways 12 boys can be seated on 10 chairs in a row so that two particular boys always take seat?
15. In how many ways 7 positive and 5 negative signs can be arranged in a row so that no two negative signs occur together?
16. From a group of 7 boys and 5 girls, a team consisting of 4 boys and 2 girls is to be made. In how many different ways it can be done?
17. In how many ways can one select a cricket team of eleven players from 17 players in which only 6 players can bowl and exactly 5 bowlers are to be included in the team?
18. In how many ways 11 players can be choosen from 16 players so that 2 particular players are always excluded?
19. Using the digits $0,1,2,2,3$ how many numbers greater than 20000 can be made?
20. If the letters of the word 'PRANAV' are arranged as in dictionary in all possible ways, then what will be $182^{\text {nd }}$ word.
21. From a class of 15 students, 10 are to choosen for a picnic. There are two students who decide that either both will join or none of them will join. In how many ways can the picnic be organized?
22. Using the letters of the word, 'ARRANGEMENT' how many different words (using all letters at a time) can be made such that both A, both E, both R and both N occur together.
23. A polygon has 35 diagnals. Find the number of its sides.
[Hint : Number of diagnals of n sided polygon is given by ${ }^{n} C_{2}-n$]
24. How many different products can be obtained by multiplying two or more of the numbers $2,3,6,7,9$?
25. Determine the number of 5 cards combinations out of a pack of 52 cards if atleast 3 out of 5 cards are ace cards?
26. How many words can be formed from the letters of the word 'ORDINATE' so that vowels occupy odd places?
27. Determine n if ${ }^{2 \mathrm{n}} \mathrm{C}_{3}:{ }^{\mathrm{n}} \mathrm{C}_{3}=11: 1$
28. There are 15 points in a plane, no three of which are in the same straight line except 4 which are collinear. Find the number of
(i) straight lines
(ii) triangles formed by joining them.
29. A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if a team has
(i) no girl
(ii) at least 3 girls
(iii) at least one girl and one boy?
30. Find n if

$$
16^{n+2} C_{8}=57^{n-2} P_{4}
$$

LONG ANSWER TYPE QUESTIONS (6 MARKS)

31. Using the digits $0,1,2,3,4,5,6$ how many 4 digit even numbers can be made, no digit being repeated?
32. There are 15 points in a plane out of which only 6 are in a straight line, then
(a) How many different straight lines can be made?
(b) How many triangles can be made?
33. If there are 7 boys and 5 girls in a class, then in how many ways they can be seated in a row such that
(i) No two girls sit together?
(ii) All the girls never sit together?
34. Using the letters of the word 'EDUCATION' how many words using 6 letters can be made so that every word contains atleast 4 vowels?
35. What is the number of ways of choosing 4 cards from a deck of 52 cards? In how many of these,
(a) 3 are red and 1 is black.
(b) All 4 cards are from different suits.
(c) Atleast 3 are face cards.
(d) All 4 cards are of the same colour.
36. How many 3 letter words can be formed using the letters of the word INEFFECTIVE?
37. How many 5 letter words containing 3 vowels and 2 consonants can be formed using the letters of the word EQUATION so that 3 vowels always occur together?
38. If all letters of word 'MOTHER' are written in all possible orders and the word so formed are arranged in a dictionary order, then find the rank of word 'MOTHER'?

ANSWERS

1. 60
2. 100
3. 120
4. $\mathrm{n}=6$
5. 120
6. 35
7. 120
8. 56
9. 2772
10. 36
11. ${ }^{13} \mathrm{C}_{10}+{ }^{13} \mathrm{C}_{8}$
12. 10
13. $\frac{9!}{2!}$
14. 45
15. 513
16. 120
17. 1
18. 360
19. $90 \times{ }^{10} \mathrm{P}_{8}$
20. 350
21. 364
22. PAANVR
23. 5040
24. 26
25. 4560
26. 6
27. (i) 21 ;
(ii) 91 ;
(iii) 441
28. 420
29.

(a) 91
(b) 435
(i) $7!\times{ }^{8} \mathrm{P}_{5}$
(ii) $12!-8!\times 5$!
33.
34. 24480
35. ${ }^{52} \mathrm{C}_{4}$
(a) ${ }^{26} \mathrm{C}_{1} \times{ }^{26} \mathrm{C}_{3}$
(b) $\quad(13)^{4}$
(c) 9295 (Hint: Face cards: 4J $+4 \mathrm{~K}+4 \mathrm{Q}$)
(d) $2 \times{ }^{26} \mathrm{C}_{4}$
36. 265 (Hint : make 3 cases i.e.
(i) All 3 letters are different
(ii) 2 are identical 1 different
(iii) All are identical, then form the words.)
37. 1080
38. 309

CHAPTER - 8

BINOMIAL THEOREM

KEY POINTS

- $(a+b)^{n}=n_{C_{0}} a^{n}+n_{C_{1}} a^{n-1} b+n_{C_{2}} a^{n-2} b^{2}+\cdots+n_{C_{n}} b^{n}$ $=\sum_{r=0}^{n} n_{C_{r}} a^{n-r} b^{r}, n \in N$
- $\mathrm{T}_{\mathrm{r}+1}=$ General term

$$
=n_{C_{r}} a^{n-r} b^{r} \quad 0 \leq r \leq n
$$

- Total number of terms in $(a+b)^{n}$ is $(n+1)$
- If n is even, then in the expansion of $(a+b)^{n}$, middle term is $\left(\frac{n}{2}+1\right)^{\text {th }}$ term i.e. $\left(\frac{\mathrm{n}+2}{2}\right)^{\mathrm{th}}$ term.
- If n is odd, then in the expansion of $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}$, middle terms are $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ and $\left(\frac{\mathrm{n}+3}{2}\right)^{\text {th }}$ terms
- In $(a+b)^{n}$, $r^{\text {th }}$ term from the end is same as $(n-r+2)^{\text {th }}$ term from the beginning.
- $r^{\text {th }}$ term from the end in $(a+b)^{n}$
$=r^{\text {th }}$ term from the beginning in $(b+a)^{n}$
- $\ln (1+x)^{n}$, coefficient of x^{r} is ${ }^{n} C_{r}$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Compute $(98)^{2}$, using binomial theorem.
2. Expand $\left(x-\frac{1}{x}\right)^{3}$ using binomial theorem.
3. Find number of terms in the expansionof the following :
(i) $\left(3 x-\frac{7}{y^{2}}\right)^{8}$
(ii) $\left(1+2 x+x^{2}\right)^{7}$
(iii) $\left(x^{2}-6 x+9\right)^{10}$
4. Write number of terms in $(2 a-b)^{15}$
5. Simplify :

$$
\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}
$$

6. Write value of

$$
{ }^{2 n-1} C_{5}+{ }^{2 n-1} C_{6}+{ }^{2 n} C_{7}
$$

[Hint: Use ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$]
7. In the expansion, $(1+x)^{14}$, write the coefficient of x^{12}
8. Find the sum of the coefficients in $(x+y)^{8}$
[Hint : Put $\mathrm{x}=1, \mathrm{y}=1$]
9. If ${ }^{n} C_{n-3}=120$, find n.
[Hint : Express 720 as the product of 3 consecutive positive integers]
10. Find middle term in expansion of $(1+x)^{2 n}$.
11. Find
(i) 3rd term in expansion of $\left(3 x^{2}-\frac{2}{x}\right)^{8}$
(ii) 4th term in expansion of $(x-2 y)^{12}$
(iii) 4th term from end in the expansion of $\left(\frac{x^{3}}{2}-\frac{2}{x^{2}}\right)^{9}$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

12. If the first three terms in the expansion of $(a+b)^{n}$ are 27, 54 and 36 respectively, then find a, b and n.
13. $\operatorname{In}\left(3 x^{2}-\frac{1}{x}\right)^{18}$, which term contains x^{12} ?
14. In $\left(2 x-\frac{1}{x^{2}}\right)^{15}$, find the term independent of x.
15. Evaluate : $(\sqrt{2}+1)^{5}-(\sqrt{2}-1)^{5}$ using binomial theorem.
16. Evaluate $(0.9)^{4}$ using binomial theorem.
17. In the expansion of $\left(1+x^{2}\right)^{8}$, find the difference between the coefficients of x^{6} and x^{4}.
18. In $\left(2 x-\frac{3}{x}\right)^{8}$, find $7^{\text {th }}$ term from end.
19. $\ln \left(2 x^{3}-\frac{1}{x^{2}}\right)^{12}$, find the coefficient of x^{11}.
20. Find the coefficient of x^{4} in $(1-x)^{2}(2+x)^{5}$ using binomial theorem.
21. Using binomial theorem, show that $3^{2 n+2}-8 n-9$ is divisible by 8 .
[Hint : $3^{2 n+2}=9\left(3^{2}\right)^{n}=9(1+8)^{n}$, Now use binomial theorem.]
22. Prove that,

$$
\sum_{r=0}^{20}{ }^{20} C_{20-r}(2-t)^{20-r}(t-1)^{r}=1
$$

23. Find the middle term(s) in $\left(x-\frac{1}{x}\right)^{8}$
24. If the coefficients of three consecutive terms in the expansion of $(1+x)^{n}$ are in the ratio $1: 3: 5$, then show that $n=7$.
25. Show that the coefficient of middle term in the expansion of $(1+x)^{20}$ is equal to the sum of the coefficients of two middle terms in the expansion of $(1+x)^{19}$

LONG ANSWER TYPE QUESTIONS (6 MARKS)

26. Show that the coefficient of x^{5} in the expansion of product $(1+2 x)^{6}$ $(1-x)^{7}$ is 171 .
27. If the $3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$ terms in the expansion of $(x+a)^{n}$ are 84,280 and 560 respectively then find the values of a, x and n
28. In the expansion of $(1-x)^{2 n-1}$, find the sum of coefficients of x^{r-1} and $x^{2 n-r}$
29. If the coefficients of x^{7} in $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ and x^{-7} in $\left(a x-\frac{1}{b x^{2}}\right)^{11}$ are equal, then show that $a b=1$.
30. If three successive coefficients in expansion of $(1+x)^{n}$ are 220, 495 and 792 then find n.

ANSWERS

1. 9604
2. (i) 9 ;
(ii) 15 ; (iii) 21
3. $x^{3}-\frac{1}{x^{3}}-3 x+\frac{3}{x}$
4. 16
5. $\frac{n-r+1}{r}$
6. ${ }^{2 n+1} C_{7}$
7. 91
8. 256
9. $\mathrm{n}=10$
10. ${ }^{2 n} C_{n+1} x^{n+1}$
11. (i) $112 \times 3^{6} \times x^{10}$;
(ii) $-1760 x^{9} y^{3}$;
(iii) $\frac{672}{x^{3}}$
12. $a=3, b=2, n=3$
13. $-2^{10} \times{ }^{15} \mathrm{C}_{5}$
14. 0.6561
15. $16128 \mathrm{x}^{4}$
16. 10
17. $a=2, x=1, n=7$
18. 12
19. $9^{\text {th }}$ term
20. 82
21. 28
22. -101376
23. 70
24. 0
25. 9
26. In the expansion of $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$ the ratio of 7 th term from the beginning to the 7 th term from the end is $1: 6$ find n.

CHAPTER - 9

SEQUENCES AND SERIES

KEY POINTS

- A sequence is a function whose domain is the set N of natural numbers.
- A sequence whose range is a subset of R is called a real sequence.
- A sequence is said to be a progression if the term of the sequence can be expressed by some formula
- A sequence is called an arithmetic progression if the difference of a term and previous term is always same, i.e., $a_{n+1}-a_{n}=$ constant (=d) for all $n \in N$.
- The term 'series' is associated with the sequence in following way :

Let $a_{1}, a_{2}, a_{3} \ldots$. be a sequence. Then, the expression $a_{1}+a_{2}+a_{3}+$ is called series associated with given sequence.

- A series is finite or infinite according as the given sequence is finite or infinite.
- General A.P. is,
$a, a+d, a+2 d$,
- $a_{n}=a+(n-1) d=n^{\text {th }}$ term
- $S_{n}=$ Sum of first n terms of A.P.

$$
\begin{aligned}
& =\frac{\mathrm{n}}{2}[\mathrm{a}+l] \text { where } l=\text { last term. } \\
& =\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]
\end{aligned}
$$

- If a, b, c are in A.P. then $a \pm k, b \pm k, c \pm k$ are in A.P., ak, bk, ck are also in A.P., $k \neq 0$
- Three numbers in A.P.

$$
a-d, a, a+d
$$

- Arithmetic mean between a and b is $\frac{\mathrm{a}+\mathrm{b}}{2}$.
- If $A_{1}, A_{2}, A_{3}, \ldots \ldots . A_{n}$ are inserted between a and b, such that the resulting sequence is A.P. then,

$$
A_{n}=a+n\left(\frac{b-a}{n+1}\right)
$$

- $S_{k}-S_{k-1}=a_{k}$
- $a_{m}=n, a_{n}=m \Rightarrow a_{r}=m+n-r$
- $S_{m}=S_{n} \Rightarrow S_{m+n}=0$
- $S_{p}=q$ and $S_{q}=p \Rightarrow S_{p+q}=-p-q$
- In an A.P., the sum of the terms equidistant from the beginning and from the end is always same, and equal to the sum of the first and the lastterm
- G.P. (Geometrical Progression)

$$
\begin{aligned}
& a, a r, a r^{2}, \ldots \ldots . .(\text { General G.P.) } \\
& a_{n}=a r^{n-1} \\
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}, \quad r \neq 1
\end{aligned}
$$

- Geometric mean between a and b is $\sqrt{a b}$
- Reciprocals of terms in GP always form a G.P.
- If $G_{1}, G_{2}, G_{3}, \ldots \ldots \ldots . G_{n}$ are n numbers inserted between a and b so that the resulting sequence is G.P., then

$$
\mathrm{G}_{\mathrm{k}}=\mathrm{a}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)^{\frac{\mathrm{k}}{\mathrm{n}+1}}, 1 \leq \mathrm{k} \leq \mathrm{n}
$$

- In a G.P., the product of the terms equidistant from the beginning and from the end is always same and equal to the product of the first and the last term.
- If each term of a G.P. be raised to some power then the resulting terms are also in G.P.
- Sum of infinite G.P. is possible if $|r|<1$ and sum is given by $\frac{a}{1-r}$
- $\sum_{r=1}^{n} r=\frac{n(n+1)}{2}$
- $\sum_{r=1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6}$
- $\sum_{r=1}^{n} r^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. If $n^{\text {th }}$ term of an A.P. is $6 n-7$ then write its $50^{\text {th }}$ term.
2. If $S_{n}=3 n^{2}+2 n$, then write a_{2}
3. Which term of the sequence,

3, 10, 17, \qquad is $136 ?$
4. If in an A.P. $7^{\text {th }}$ term is 9 and $9^{\text {th }}$ term is 7 , then find $16^{\text {th }}$ term.
5. If sum of first n terms of an A.P is $2 n^{2}+7 n$, write its $n^{\text {th }}$ term.
6. Which term of the G.P.,
$2,1, \frac{1}{2}, \frac{1}{4}$,
is $\frac{1}{1024} ?$
7. If in a G.P., $a_{3}+a_{5}=90$ and if $r=2$ find the first term of the G.P.
8. In G.P. $2,2 \sqrt{2}, 4$, \qquad $128 \sqrt{2}$, find the $4^{\text {th }}$ term from the end.
9. If the product of 3 consecutive terms of G.P. is 27 , find the middle term
10. Find the sum of first 8 terms of the G.P. $10,5, \frac{5}{2}, \ldots \ldots$
11. Find the value of $5^{1 / 2} \times 5^{1 / 4} \times 5^{1 / 8} \ldots \ldots$ upto infinity.
12. Write the value of $0 . \overline{3}$
13. The first term of a G.P. is 2 and sum to infinity is 6 , find common ratio.
14. Write the $\mathrm{n}^{\text {th }}$ term of the series, $\frac{3}{7.11^{2}}+\frac{5}{8.12^{2}}+\frac{7}{9.13^{2}}+\ldots \ldots$
15. Find the number of terms in the A.P. $7,10,13, \ldots . ., 31$.
16. Find the 12th term of the A.P. $80,75,70, \ldots \ldots .$.
17. Find a_{5} of the series whose $n^{\text {th }}$ term is $2^{n}+3$.
18. In an infinite G.P., every term is equal to the sum of all terms that follow it. Find r
19. In an A.P.,
$8,11,14, \ldots \ldots \ldots$. find $S_{n}-S_{n-1}$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

20. Write the first negative term of the sequence $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots \ldots$.
21. Determine the number of terms in A.P. 3, 7, 11, 407. Also, find its $11^{\text {th }}$ term from the end.
22. How many numbers are there between 200 and 500, which leave remainder 7 when divided by 9.
23. Find the sum of all the natural numbers between 1 and 200 which are neither divisible by 2 nor by 5 .
24. Find the sum of the sequence,

$$
-1, \frac{-5}{6}, \frac{-2}{3}, \frac{-1}{2},----, \frac{10}{3}
$$

25. If in an A.P. $\frac{a_{7}}{a_{10}}=\frac{5}{7}$ find $\frac{a_{4}}{a_{7}}$
26. In an A.P. sum of first 4 terms is 56 and the sum of last 4 terms is 112 . If the first term is 11 then find the number of terms.
27. Solve : $1+6+11+16+$ \qquad $+x=148$
28. The ratio of the sum of n terms of two A.P.'s is $(7 n-1)$: $(3 n+11)$, find the ratio of their $10^{\text {th }}$ terms.
29. If the $I^{\text {st }}, 2^{\text {nd }}$ and last terms of an A.P are a, b and c respectively, then find the sum of all terms of the A.P.
30. If $\frac{\mathrm{b}+\mathrm{c}-2 \mathrm{a}}{\mathrm{a}}, \frac{\mathrm{c}+\mathrm{a}-2 \mathrm{~b}}{\mathrm{~b}}, \frac{\mathrm{a}+\mathrm{b}-2 \mathrm{c}}{\mathrm{c}}$ are in A.P. then show that $\frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, \frac{1}{\mathrm{c}}$ are also in A.P. [Hint. : Add 3 to each term]
31. The product of first three terms of a G.P. is 1000 . If 6 is added to its second term and 7 is added to its third term, the terms become in A.P. Find the G.P.
32. If the continued product of three numbers in G.P. is 216 and the sum of their products in pairs is 156, find the numbers.
33. Find the sum of first n terms of the series :
$3+7+13+21+31+$ \qquad
34. If $A=1+r^{a}+r^{2 a}+$ \qquad up to infinity, then express r in terms of ' a ' \& ' A '.
35. Insert 5 numbers between 7 and 55 , so that resulting series is A.P.
36. Find the sum of first n terms of the series, $0.7+0.77+0.777+\ldots \ldots$
37. The sum of first three terms of a G.P. is 15 and sum of next three terms is 120 . Find the sum of first n terms.
38. Prove that, $0.03 \overline{1}=\frac{7}{225}$
$[$ Hint : $0.03 \overline{1}=0.03+0.001+0.0001+\ldots \ldots$. . Now use infinite G.P.]

LONG ANSWER TYPE QUESTIONS (6 MARKS)

39. Prove that the sum of n numbers between a and b such that the resulting series becomes A.P. is $\frac{n(a+b)}{2}$.
40. A square is drawn by joining the mid points of the sides of a square. A third square is drawn inside the second square in the same way and the process is continued indefinitely. If the side of the first square is 15 cm , then find the sum of the areas of all the squares so formed.
41. If a, b, c are in G.P., then prove that

$$
\frac{1}{a^{2}-b^{2}}=\frac{1}{b^{2}-c^{2}}-\frac{1}{b^{2}}
$$

[Hint : Put $b=a r, c=a r^{2}$]
42. Find two positive numbers whose difference is 12 and whose arithmetic mean exceeds the geometric mean by 2.
43. If a is A.M. of b and c and c, G_{1}, G_{2}, b are in G.P. then prove that

$$
\mathrm{G}_{1}^{3}+\mathrm{G}_{2}^{3}=2 \mathrm{abc}
$$

44. Find the sum of the series,

$$
1.3 .4+5.7 .8+9.11 .12+\ldots \text { upto } n \text { terms. }
$$

45. Evaluate $\sum_{r=1}^{10}(2 r-1)^{2}$
46. The sum of an infinite G.P. is 57 and the sum of the cubes of its term is 9747 , find the G.P.
*47. Show that $\frac{1 \times 2^{2}+2 \times 3^{2}+\ldots \ldots .+n \times(n+1)^{2}}{1^{2} \times 2+2^{2} \times 3+\ldots \ldots .+n^{2} \times(n+1)}=\frac{3 n+5}{3 n+1}$.

ANSWERS

1. 293
2. 11
3. $20^{\text {th }}$
4. 0
5. $4 n+5$
6. $12^{\text {th }}$
7. $\frac{9}{2}$
8. 64
9. 3
10. $20\left(1-\frac{1}{2^{8}}\right)$
11. 5
12. $\frac{1}{3}$
13. $\frac{2}{3}$
14. $\frac{2 n+1}{(n+6)(n+10)^{2}}$
15. 9
16. 25
17. 35
18. $r=\frac{1}{2}$
19. $3 n+5$
20. $-\frac{1}{4}$
21. 102, 367
22. 33
23. 7999
24. $\frac{63}{2}$
25. $\frac{3}{5}$
26. 11
27. 36
28. $33: 17$
29. $\frac{(b+c-2 a)(a+c)}{2(b-a)}$
30. $5,10,20, \ldots \ldots ;$ or $20,10,5, \ldots \ldots$.
31. $18,6,2$; or $2,6,18$
32. $\frac{n}{3}\left(n^{2}+3 n+5\right)$
33. $\left(\frac{A-1}{A}\right)^{1 / a}$
34. $15,23,31,39,47$
35. $\frac{7}{81}\left(9 n-1+10^{-n}\right)$
36. $\frac{15}{7}\left(2^{n}-1\right)$
37. $450 \mathrm{~cm}^{2}$
38. $\frac{n(n+1)}{3}\left(48 n^{2}-16 n-14\right) \quad$ 45. 1330
39. $19, \frac{38}{3}, \frac{76}{9}, \ldots \ldots$

CHAPTER - 10

STRAIGHT LINES

- Distance between two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is given by

$$
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

- Let the vertices of a triangle $A B C$ are $A\left(x_{1}, y_{1}\right) B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$.

Then area of triangle $A B C=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$

- Straight line is a curve such that every point on the line segment joining any two points on it lies on it.
- A line is also defined as the locus of a point satisfying the condition ax $+b y+c=0$ where a, b, c are constants.
- Slope or gradient of a line is defined as $m=\tan \theta,\left(\theta \neq 90^{\circ}\right)$, where θ is angle which the line makes with positive direction of x-axis measured in anticlockwise direction, $0 \leq \theta<180^{\circ}$
- Slope of x-axis is zero and slope of y-axis is not defined.
- Three points A, B and C lying in a plane are collinear, if slope of $A B=$ Slope of BC.
- Slope of a line through given points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
- Two lines are parallel to each other if and only if their slopes are equal.
- Two lines are perpendicular to each other if and only if their slopes are negative reciprocal of each other.
- Acute angle α between two lines, whose slopes are m_{1} and m_{2} is given by $\tan \alpha=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|, 1+m_{1} m_{2} \neq 0$
- $\quad x=a$ is a line parallel to y-axis at a distance of a units from y-axis. $x=a$ lies on right or left of y-axis according as a is positive or negative.
- $\quad y=b$ is a line parallel to x-axis at a distance of ' b ' units from x-axis. $y=b$ lies above or below x-axis, according as b is positive or negative.
- Equation of a line passing through given point $\left(x_{1}, y_{1}\right)$ and having slope m is given by

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

- Equation of a line passing through given points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$
- Equation of a line having slope m and y-intercept c is given by

$$
y=m x+c
$$

- Every first degree equation in x, y represents a straight line.
- Equation of line having intercepts a and b on x-axis and y-axis respectively is given by

$$
\frac{x}{a}+\frac{y}{b}=1
$$

- Equation of line in normal form is given by $x \cos \alpha+y \sin \alpha=p$, $p=$ Length of perpendicular segment from origin to the line $\alpha=$ Angle which the perpendicular segment makes with positive direction of x-axis
- Equation of line in general form is given by $A x+B y+C=0, A, B$ and C are real numbers and at least one of A or B is non zero.
- Distance of a point $\left(x_{1}, y_{1}\right)$ from line $A x+B y+C=0$ is given by

$$
\mathrm{d}=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}
$$

- Distance between two parallel lines $A x+B y+C_{1}=0$ and $A x+B y+C_{2}=0$ is given by

$$
d=\frac{\left|C_{1}-C_{2}\right|}{\sqrt{A^{2}+B^{2}}}
$$

- Shifting of origin to a new point without changing the direction of the axes is known as translation of axes.

Let OX, OY be the original axes and O^{\prime} be the new origin. Let coordinates of O^{\prime} referred to original axes be (h, k). Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be point in plane

Let $O^{\prime} X^{\prime}$ and $O^{\prime} Y^{\prime}$ be drawn parallel to and in same direction as $O X$ and OY respectively. Let coordinates of P referred to new axes $O^{\prime} X^{\prime}$ and $O^{\prime} Y^{\prime}$ be (x^{\prime}, y^{\prime}) then $x=x^{\prime}+h, y=y^{\prime}+k$
or

$$
x^{\prime}=x-h, y^{\prime}=y-k
$$

Thus
(i) The point whose coordinates were (x, y) has now coordinates $(x-h, y-k)$ when origin is shifted to (h, k).
(ii) Coordinates of old origin referred to new axes are ($-\mathrm{h},-\mathrm{k}$).

- Equation of family of lines parallel to $A x+B y+C=0$ is given by $A x+B y+k=0$, for different real values of k
- Equation of family of lines perpendicular to $A x+B y+C=0$ is given by $B x-A y+k=0$, for different real values of k.
- Equation of family of lines through the intersection of lines $A_{1} x+B_{1} y+C_{1}=$ 0 and $A_{2} x+B_{2} y+C_{2}=0$ is given by $\left(A_{1} x+B_{1} y+C_{1}\right)+k\left(A_{2} x+B_{2} y+C_{2}\right)=$ 0 , for different real values of k.

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Three consecutive vertices of a parallelogram are $(-2,-1),(1,0)$ and $(4$, 3), find the fourth vertex.
2. For what value of k are the points $(8,1),(k,-4)$ and $(2,-5)$ collinear?
3. The mid point of the segment joining (a, b) and $(-3,4 b)$ is $(2,3 a+4)$. Find a and b.
4. Coordinates of centroid of $\triangle \mathrm{ABC}$ are $(1,-1)$. Vertices of $\triangle \mathrm{ABC}$ are $A(-5,3), B(p,-1)$ and $C(6, q)$. Find p and q.
5. In what ratio y-axis divides the line segment joining the points $(3,4)$ and $(-2,1)$?
6. What are the possible slopes of a line which makes equal angle with both axes?
7. Determine x so that slope of line through points $(2,7)$ and $(x, 5)$ is 2 .
8. Show that the points $(a, 0),(0, b)$ and $(3 a-2 b)$ are collinear.
9. Find the equation of straight line cutting off an intercept -1 from y axis and being equally inclined to the axes.
10. Write the equation of a line which cuts off equal intercepts on coordinate axes and passes through $(2,5)$.
11. Find k so that the line $2 x+k y-9=0$ may be perpendicular to $2 x+3 y-1=0$
12. Find the acute angle between lines $x+y=0$ and $y=0$
13. Find the angle which $\sqrt{3} x+y+5=0$ makes with positive direction of x-axis.
14. If origin is shifted to $(2,3)$, then what will be the new coordinates of $(-1,2) ?$
15. On shifting the origin to (p, q), the coordinates of point $(2,-1)$ changes to (5, 2). Find p and q.
16. Determine the equation of line through a point $(-4,-3)$ and parallel to x-axis.

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

17. If the image of the point $(3,8)$ in the line $p x+3 y-7=0$ is the point $(-1,-4)$, then find the value of p.
18. Find the distance of the point $(3,2)$ from the straight line whose slope is 5 and is passing through the point of intersection of lines $x+2 y=5$ and $x-3 y+5=0$
19. The line $2 x-3 y=4$ is the perpendicular bisector of the line segment $A B$. If coordinates of A are $(-3,1)$ find coordinates of B.
20. The points $(1,3)$ and $(5,1)$ are two opposite vertices of a rectangle. The other two vertices lie on line $y=2 x+c$. Find c and remaining two vertices.
21. If two sides of a square are along $5 x-12 y+26=0$ and $5 x-12 y-65=0$ then find its area.
22. Find the equation of a line with slope -1 and whose perpendicular distance from the origin is equal to 5 .
23. If a vertex of a square is at $(1,-1)$ and one of its side lie along the line $3 x-4 y-17=0$ then find the area of the square.
24. What is the value of y so that line through $(3, y)$ and $(2,7)$ is parallel to the line through $(-1,4)$ and $(0,6)$?
25. In what ratio, the line joining $(-1,1)$ and $(5,7)$ is divided by the line $x+$ $y=4$?
26. Find the equation of the lines which cut-off intercepts on the axes whose sum and product are 1 and -6 respectively.
27. Find the area of the triangle formed by the lines $y=x, y=2 x, y=3 x+4$.
28. Find the coordinates of the orthocentre of a triangle whose vertices are $(-1,3)(2,-1)$ and $(0,0)$. [Orthocentre is the point of concurrency of three altitudes].
29. Find the equation of a straight line which passes through the point of intersection of $3 x+4 y-1=0$ and $2 x-5 y+7=0$ and which is perpendicular to $4 x-2 y+7=0$.
30. If the image of the point $(2,1)$ in a line is $(4,3)$ then find the equation of line.

LONG ANSWER TYPE QUESTIONS (6 MARKS)

31. Find points on the line $x+y+3=0$ that are at a distance of $\sqrt{5}$ units from the line $x+2 y+2=0$
32. Find the equation of a straight line which makes acute angle with positive direction of x-axis, passes through point $(-5,0)$ and is at a perpendicular distance of 3 units from origin.
33. One side of a rectangle lies along the line $4 x+7 y+5=0$. Two of its vertices are $(-3,1)$ and $(1,1)$. Find the equation of other three sides.
34. If $(1,2)$ and $(3,8)$ are a pair of opposite vertices of a square, find the equation of the sides and diagonals of the square.
35. Find the equations of the straight lines which cut off intercepts on x-axis twice that on y-axis and are at a unit distance from origin.
36. Two adjacent sides of a parallelogram are $4 x+5 y=0$ and $7 x+2 y=$ 0 . If the equation of one of the diagonals is $11 x+7 y=4$, find the equation of the other diagonal.
37. A line is such that its segment between the lines $5 x-y+4=0$ and $3 x+4 y-4=0$ is bisected at the point $(1,5)$. Obtain its equation.

ANSWERS

1. $(1,2)$
2. $a=7, b=10$
3. $3: 2$ (internally)
4. 1
5. $x+y=7$
6. $\frac{\pi}{4}$
7. $(-3,-1)$
8. $\mathrm{k}=3$
9. $p=2, q=-5$
10. ± 1
11. $\mathrm{y}=\mathrm{x}-1$ and $\mathrm{y}=-\mathrm{x}-1$.
12. $\frac{-4}{3}$
13. $\frac{2 \pi}{3}$
14. $p=-3, q=-3$
15. $y+3=0$
16. $\frac{10}{\sqrt{26}}$
17. $(1,-5)$
18. $c=-4,(2,0),(4,4)$
19. $x+y+5 \sqrt{2}=0, x+y-5 \sqrt{2}=0$
20. 4 square units
21. $y=9$
22. $1: 2$
23. $2 x-3 y-6=0$ and $-3 x+2 y-6=0$
24. 4 square units
25. (-4, -3)
26. $x+2 y=1$
27. $x+y-5=0$
28. $(1,-4),(-9,6)$
29. $3 x-4 y+15=0$
30. $4 x+7 y-11=0,7 x-4 y+25=0$
$7 x-4 y-3=0$
31. $x-2 y+3=0,2 x+y-14=0$,
$x-2 y+13=0,2 x+y-4=0$
$3 x-y-1=0, x+3 y-17=0$
32. $x+2 y+\sqrt{5}=0, x+2 y-\sqrt{5}=0$
33. $x=y$
34. $107 x-3 y-92=0$

CHAPTER-11

CONIC SECTIONS

KEY POINTS

- Circle, ellipse, parabola and hyperbola are curves which are obtained by intersection of a plane and cone in different positions
- Circle : It is the set of all points in a plane that are equidistant from a fixed point in that plane
- Equation of circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$

Centre (h, k), radius $=\mathrm{r}$

- Parabola : It is the set of all points in a plane which are equidistant from a fixed point (focus) and a fixed line (directrix) in the plane. Fixed point does not lie on the line.

$x^{2}=4 a y$

Main facts about the Parabola

Equation	$y^{2}=4 a x$ $(a>0)$ Right hand	$y^{2}=-4 a x$ $a>0$ Left hand	$x^{2}=4 a y$ $a>0$ Upwards	$x^{2}=-4 a y$ Downwards
Axis	$y=0$	$y=0$	$x=0$	$x=0$
Directrix	$x+a=0$	$x-a=0$	$y+a=0$	$y-a=0$
Focus	$(a, 0)$	$(-a, 0)$	$(0, a)$	$(0,-a)$
Length of latus-rectum	$4 a$	$4 a$	$4 a$	$4 a$
Equation of latus-rectum	$x-a=0$	$x+a=0$	$y-a=0$	$y+a=0$

- Latus Rectum : A chord through focus perpendicular to axis of parabola is called its latus rectum.
- Ellipse: It is the set of points in a plane the sum of whose distances from two fixed points in the plane is a constant and is always greater than the distances between the fixed points

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1
$$

$\mathrm{a}>\mathrm{b}>0, \mathrm{a}>\mathrm{b}>0$
$c=\sqrt{a^{2}-b^{2}}$
Main facts about the ellipse

Equation	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$,	$\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$
	$a>0, b>0$	$a>0, b>0$
Centre	$(0,0)$	$(0,0)$
Major axis lies along	x-axis	y-axis
Length of major axis	$2 a$	$2 a$
Length of minor axis	$2 b$	$2 b$
	$\mathbf{7 6}$	$[$ XI - Mathematics]

Foci	$(-c, 0),(c, 0)$	$(0,-c),(0, c)$
Vertices	$(-a, 0),(a, 0)$	$(0,-a),(0, a)$
Eccentricity e	$\frac{c}{a}$	$\frac{c}{a}$
Length of latus-rectum	$\frac{2 b^{2}}{a}$	$\frac{2 b^{2}}{a}$

- Latus rectum : Chord through foci perpendicular to major axis called latus rectum.
- Hyperbola : It is the set of all points in a plane, the differences of whose distance from two fixed points in the plane is a constant.

Main facts about the Hyperbola

Equation	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$,	$\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$
	$a>0, b>0$	$a>0, b>0$
Centre	$(0,0)$	$(0,0)$
Transverse axis lies along	$x-a x i s$	$y-a x i s$
Length of transverse axis	$2 a$	$2 a$
Length of conjugate axis	$2 b$	$2 b$
Foci	$(-c, 0),(c, 0)$	$(0,-c),(0, c)$
Vertices	$(-a, 0),(a, 0)$	$(0,-a),(0, a)$
Eecentricity e	$\frac{c}{a}$	$\frac{c}{a}$
Length of latus-rectum	$\frac{2 b^{2}}{a}$	$\frac{2 b^{2}}{a}$
	$\mathbf{7 7}$	$[X I-$ Mathematics]

- Latus Rectum : Chord through foci perpendicular to transverse axis is called latus rectum.

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Find the centre and radius of the circle

$$
3 x^{2}+3 y^{2}+6 x-4 y-1=0
$$

2. Does $2 x^{2}+2 y^{2}+3 y+10=0$ represent the equation of a circle? Justify.
3. Find equation of circle whose end points of one of its diameter are (-2 , $3)$ and ($0,-1$).
4. Find the value(s) of p so that the equation $x^{2}+y^{2}-2 p x+4 y-12=0$ may represent a circle of radius 5 units.
5. If parabola $y^{2}=p x$ passes through point $(2,-3)$, find the length of latus rectum.
6. Find the coordinates of focus, and length of latus rectum of parabola $3 y^{2}=8 x$.
7. Find the eccentricity of the ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

8. Find the centre and radius of the circle $x^{2}+y^{2}-6 x+4 y-12=0$
9. Find the length of major and minor axis of the following ellipse,

$$
16 x^{2}+25 y^{2}=400
$$

10. Find the eqn. of hyperbola satisfying given conditions foci ($\pm 5,0$) and transverse axis is of length 8.

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

11. One end of diameter of a circle $x^{2}+y^{2}-6 x+5 y-7=0$ is (7, -8$)$. Find the coordinates of other end.
12. Find the equation of the ellipse coordinates of whose foci are $(\pm 2,0)$ and length of latus rectum is $\frac{10}{3}$.
13. Find the equation of ellipse with eccentricity $\frac{3}{4}$, centre at origin, foci on y-axis and passing through point $(6,4)$.
14. Find the equation of hyperbola with centre at origin, transverse axis along x-axis, eccentricity $\sqrt{5}$ and sum of lengths of whose axes is 18.
15. Find the equation for the ellipse that satisfies the given condition :

Major axis on the x-axis and passes through the points $(4,3)$ and $(6,2)$.
16. Find the equation of hyperbola satisfying given conditons :

$$
\text { foci }(\pm 5,0) \text { and passing through }(\sqrt{32}, 3)
$$

17. Two diameters of a circle are along the lines $x-y-9=0$ and $x-2 y-7=0$ and area of circle is 154 square units, find its equation.
18. Find equation(s) of circle passing through points $(1,1),(2,2)$ and whose radius is 1 unit.
19. Find equation of circle concentric with circle $4 x^{2}+4 y^{2}-12 x-16 y-21=0$ and of half its area.
20. Find the equation of a circle whose centre is at (4, -2) and $3 x-4 y+5=$ 0 is tangent to circle.

LONG ANSWER TYPE QUESTIONS (6 MARKS)

21. Show that the four points $(7,5),(6,-2)(-1,-1)$ and $(0,6)$ are concyclic. [Concylic points : Four or more points which lie on a circle].
22. Find the equation of the circle which passes through the points $(1,-2)$ and $(4,-3)$ and has its centre on the line $3 x+4 y=7$.

ANSWERS

1. $\left(-1, \frac{2}{3}\right), \frac{4}{3}$
2. No
3. $x^{2}+y^{2}+2 x-2 y-3=0$ or $(x+1)^{2}+(y-1)^{2}=5$
4. $-3,+3$
5. $\frac{9}{2}$
6. $\left(\frac{2}{3}, 0\right), \frac{8}{3}$
7. $\frac{4}{5}$
8. $(3,-2), 5$
9. 10,8
10. $\frac{x^{2}}{16}-\frac{\mathrm{y}^{2}}{9}=1$.
11. $(-1,3)$
12. $\frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{5}=1$
13. $16 x^{2}+7 y^{2}=688$
14. $4 \mathrm{x}^{2}-\mathrm{y}^{2}=36$
15. $\frac{\mathrm{x}^{2}}{52}+\frac{\mathrm{y}^{2}}{13}=1$
16. $\frac{x^{2}}{16}-\frac{\mathrm{y}^{2}}{9}=1$
17. $x^{2}+y^{2}-22 x-4 y+76=0$
[Hint : Point of intersection of two diameters is the centre]
18. $x^{2}+y^{2}-2 x-4 y+4=0, x^{2}+y^{2}-4 x-2 y+4=0$
19. $2 x^{2}+2 y^{2}-6 x+8 y+1=0$
20. $x^{2}+y^{2}-8 x+4 y-5=0$
21. $15 x^{2}+15 y^{2}-94 x+18 y+55=0$.

CHAPTER - 12

INTRODUCTION TO THREE DIMENSIONAL COORDINATE GEOMETRY

- Three mutually perpendicular lines in space define three mutually perpendicular planes, called Coordinate planes, which in turn divide the space into eight parts known as octants and the lines are known as Coordinate axes.

Coordinate axes : XOX', YOY', ZOZ'
Coordinate planes : XOY, YOZ, ZOX or
XY, YX, ZX planes
Octants : OXYZ, OX'YZ, OXY'Z, OXYZ'
OX' Y'Z, OXY'Z', OX'YZ', OX'Y'Z'

- Coordinates of a point P are the perpendicular distances of P from three coordinate planes YZ, ZX and XY respectively.
- The distance between the point $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

- Let $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ be two points in space and let R be a point on line segment $P Q$ such that it divides PQ in the ratio $m_{1}: m_{2}$
(i) internally, then the coordinates of R are

$$
\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}, \frac{m_{1} z_{2}+m_{2} z_{1}}{m_{1}+m_{2}}\right)
$$

(ii) externally, then coordinates of R are

$$
\left(\frac{m_{1} x_{2}-m_{2} x_{1}}{m_{1}-m_{2}}, \frac{m_{1} y_{2}-m_{2} y_{1}}{m_{1}-m_{2}}, \frac{m_{1} z_{2}-m_{2} z_{1}}{m_{1}-m_{2}}\right)
$$

- Coordinates of centroid of a triangle whose vertices are (x_{1}, y_{1}, z_{1}), $\left(x_{2}, y_{2}, z_{2}\right)$ and (x_{3}, y_{3}, z_{3}) are

$$
\left(\frac{x_{1}+y_{1}+z_{1}}{3}, \frac{x_{2}+y_{2}+z_{2}}{3}, \frac{x_{3}+y_{3}+z_{3}}{3}\right)
$$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Find image of $(-2,3,5)$ in $Y Z$ plane.
2. Name the octant in which $(-5,4,-3)$ lies.
3. Find the distance of the point $P(4,-3,5)$ from XY plane.
4. Find the distance of point $P(3,-2,1)$ from z-axis.
5. Write coordinates of foot of perpendicular from $(3,7,9)$ on x axis.

6 . Find the distance between points $(2,3,4)$ and $(-1,3,-2)$.
7. Find the coordinates of the foot of perpendicular drawn from the point (2 , 4,5) on y-axis.
8. Find the coordinates of foot of perpendicular from $(1,-1,1)$ on XY plane.

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

9. Show that points $(4,-3,-1),(5,-7,6)$ and $(3,1,-8)$ are collinear.
10. Find the point on y-axis which is equidistant from the point $(3,1,2)$ and $(5,5,2)$.
11. Find the coordinates of a point equidistant from four points $(0,0,0),(2,0,0)$, $(0,3,0)$ and $(0,0,8)$, if it exists.
12. The centroid of $\triangle A B C$ is at $(1,1,1)$. If coordinates of A and B are $(3,-5,7)$ and $(-1,7,-6)$ respectively, find coordinates of point C.
13. Find the length of the medians of the triangle with vertices $A(0,0,6)$ $B(0,4,0)$ and $C(6,0,0)$.
14. Find the ratio in which the line joining the points $A(2,1,5)$ and $B(3,4$, 3) is divided by the plane $2 x+2 y-2 z=1$. Also, find the coordinates of the point of division.
15. If the extremities (end points) of a diagonal of a square are (1,-2,3) and $(2,-3,5)$ then find the length of the side of square.
16. Determine the point in $X Y$ plane which is equidistant from the points $A(1,-1,0) B(2,1,2)$ and $C(3,2,-1)$.
17. If the points $A(1,0,-6), B(-5,9,6)$ and $C(-3, p, q)$ are collinear, find the value of p and q.
18. Show that the points $A(3,3,3), B(0,6,3), C(1,7,7)$ and $D(4,4,7)$ are the vertices of a square.
19. The coordinates of mid point of sides of $\triangle A B C$ are $(-2,3,5),(4,-1,7)$ and $(6,5,3)$. Find the coordinates of vertices of $\triangle A B C$.
20. Find the coordinates of the point P which is five-sixth of the way from $A(2,3,-4)$ to $B(8,-3,2)$.

ANSWERS

1. $(2,3,5)$
2. 5 units
3. $(3,0,0)$
4. $(0,4,0)$
5. $(0,5,0)$
6. $(1,1,2)$
7. $O X^{\prime} Y Z^{\prime}$
8. $\sqrt{13}$ units
9. $\sqrt{45}$ units
10. $(1,-1,0)$
11. $\left(1, \frac{3}{2}, 4\right)$
12. $7, \sqrt{34}, 7$
13. $5: 7,\left(\frac{29}{12}, \frac{9}{4}, \frac{25}{6}\right)$
14. $\sqrt{3}$ units
15. $\left(\frac{3}{2}, 1,0\right)$
16. $p=6, q=2$
17. $\left[\begin{array}{l}(0,9,1), \\ (-4,-3,9), \\ (12,1,5)\end{array}\right.$
18. $(7,-2,1)$

CHAPTER - 13

LIMITS AND DERIVATIVES

KEY POINTS

- $\quad \lim _{x \rightarrow c} f(x)=l$ if and only if

$$
\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)
$$

- $\lim _{x \rightarrow c} \alpha=\alpha$, where α is a fixed real number.
- $\lim _{x \rightarrow c} x^{n}=c^{n}$, for all $n \in N$
- $\lim _{x \rightarrow c} f(x)=f(c)$, where $f(x)$ is a real polynomial in x.

Algebra of limits

Let f, g be two functions such that $\lim _{x \rightarrow c} f(x)=l$ and $\lim _{x \rightarrow c} g(x)=m$, then

- $\lim _{x \rightarrow c}[\alpha f(x)]=\alpha \lim _{x \rightarrow c} f(x)$

$$
=\alpha l \text { for all } \alpha \in \mathrm{R}
$$

- $\lim _{x \rightarrow c}[f(x) \pm g(x)]=\lim _{x \rightarrow c} f(x) \pm \lim _{x \rightarrow c} g(x)=l \pm m$
- $\lim _{x \rightarrow c}[f(x) \cdot g(x)]=\lim _{x \rightarrow c} f(x) . \lim _{x \rightarrow c} g(x)=l m$
- $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}=\frac{l}{m}, m \neq 0 g(x) \neq 0$
- $\lim _{x \rightarrow c} \frac{1}{f(x)}=\frac{1}{\lim _{x \rightarrow c} f(x)}=\frac{1}{l}$ provided $l \neq 0 f(x) \neq 0$
- $\lim _{x \rightarrow c}\left[(f(x)]^{n}=\left[\left(\lim _{x \rightarrow c} f(x)\right)\right]^{n}=l^{n}\right.$, for all $n \in N$

Some important theorems on limits

- $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(-x)$
- $\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}$
- $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ where x is measured in radians.
- $\lim _{x \rightarrow \infty} x \sin \left(\frac{1}{x}\right)=1$
- $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1\left[\right.$ Note that $\left.\lim _{x \rightarrow 0} \frac{\cos x}{x} \neq 1\right]$
- $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$
- $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
- $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e} a$
- $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$
- $\lim _{x \rightarrow 0}(1+x)^{1 / x}=e$

Derivative of a function at any point

- A function f is said to have a derivative at any point x if it is defined in some neighbourhood of the point x and $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists.

The value of this limit is called the derivative of f at any point x and is denoted by $f^{\prime}(x)$ i.e.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Algebra of derivatives :

- $\frac{d}{d x}(\operatorname{cf}(x))=c \cdot \frac{d}{d x}(f(x))$ where c is a constant
- $\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x}(f(x)) \pm \frac{d}{d x}(g(x))$
- $\frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot \frac{d}{d x}(g(x))+g(x) \frac{d}{d x}(f(x))$
- $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \frac{d}{d x}(f(x))-f(x) \cdot \frac{d}{d x}(g(x))}{(g(x))^{2}}$
- If $y=f(x)$ is a given curve then slope of the tangent to the curve at the point (h, k) is given by $\left.\frac{d y}{d x}\right]_{(h, k)}$ and is denoted by ' m '.

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

Evaluate the following Limits :

1. $\lim _{x \rightarrow 3} \frac{\sqrt{2 x+3}}{x+3}$
2. $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$
3. $\lim _{x \rightarrow 1} \frac{\sqrt{1+x}-\sqrt{1-x}}{1+x}$
4. $\lim _{\mathrm{n} \rightarrow \infty} \frac{1+2+3+\ldots \ldots+\mathrm{n}}{\mathrm{n}^{2}}$
5. If $\lim _{x \rightarrow-a} \frac{x^{9}+a^{9}}{x+a}=9$, find the value of a.
6. $\lim _{x \rightarrow 0} \frac{\tan ^{2} 3 x}{x^{2}}$
7. $\lim _{x \rightarrow 2}\left(x^{2}-5 x+1\right)$

Differentiate the following functions with respect to \mathbf{x} :
8. $\frac{x}{2}+\frac{2}{x}$
9. $x^{2} \tan x$
10. $\frac{x}{\sin x}$
11. $\log _{x} x$
12. 2^{x}
13. If $f(x)=x^{2}-5 x+7$, find $f^{\prime}(3)$
14. If $y=\sin x+\tan x$, find $\frac{d y}{d x}$ at $x=\frac{\pi}{3}$
15. $3^{\mathrm{x}}+\mathrm{x}^{3}+3^{3}$
16. $\left(x^{2}-3 x+2\right)(x+2)$
17. $e^{3 \log x}\left(\right.$ Hint: $\left.e^{\log k}=k\right)$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

18. If $f(x)=\left\{\begin{array}{l}5 x-4,0<x \leq 1, \\ 4 x^{3}-3 x, 1<x<2\end{array}\right.$ show that $\lim _{x \rightarrow 1} f(x)$ exists.
19. If $f(x)=\left\{\begin{array}{l}\frac{x-|x|}{x}, x \neq 0 \text {, show that } \lim _{x \rightarrow 0} f(x) \text { does not exist. } \\ 2, \quad x=0\end{array}\right.$
20. Let $f(x)$ be a function defined by

$$
f(x)=\left\{\begin{array}{cl}
4 x-5, & \text { If } x \leq 2, \\
x-\lambda, & \text { If } x>2,
\end{array} \text { Find } \lambda, \text { if } \lim _{x \rightarrow 2} f(x)\right. \text { exists }
$$

Evaluate the following Limits :

21. $\lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{x^{2}-2 x-3}$
22. $\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x}$
23. $\lim _{x \rightarrow 0} \frac{x}{\sqrt{1+x}-\sqrt{1-x}}$
24. $\lim _{x \rightarrow a} \frac{x^{\frac{5}{7}}-a^{\frac{5}{7}}}{x^{\frac{2}{7}}-a^{\frac{2}{7}}}$
25. $\lim _{x \rightarrow a} \frac{(x+2)^{\frac{5}{2}}-(a+2)^{\frac{5}{2}}}{x-a}$
26. $\lim _{x \rightarrow 0} \frac{1-\cos 2 m x}{1-\cos 2 n x}$
27. $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}$
28. $\lim _{x \rightarrow 0} \frac{x \tan x}{1-\cos x}$
29. $\lim _{x \rightarrow a} \frac{\sin x-\sin a}{x-a}$
30. $\lim _{x \rightarrow a} \frac{\cos x-\cos a}{\cot x-\cot a}$
31. $\lim _{x \rightarrow \pi} \frac{1+\sec ^{3} x}{\tan ^{2} x}$
32. $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{x}$
33. $\lim _{x \rightarrow 1} \frac{x-1}{\log _{e} x}$
34. $\lim _{x \rightarrow e} \frac{\log x-1}{x-e}$
35. $\lim _{x \rightarrow 4} \frac{3-\sqrt{5+x}}{1-\sqrt{5-x}}$
36. $\lim _{x \rightarrow a} \frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a+x}-2 \sqrt{x}}$
37. $\lim _{x \rightarrow 0} \frac{\sin (2+x)-\sin (2-x)}{x}$

Differentiate the following functions with respect to x from first principle:
38. $\sqrt{2 x+3}$
40. e^{x}
42. $\operatorname{cosec} x$
44. a^{x}
39. $\frac{x^{2}+1}{x}$
41. $\log x$
43. $\cot x$

Differentiate the following functions with respect to \mathbf{x} :

45. $\frac{(3 x+1)(2 \sqrt{x}-1)}{\sqrt{x}}$
46. $\left(x-\frac{1}{\sqrt{x}}\right)^{3}$
47. $\left(x-\frac{1}{x}\right)\left(x^{2}-\frac{1}{x^{2}}\right)$
48. $\frac{\sin x-x \cos x}{x \sin x+\cos x}$
49. $x^{3} e^{x} \sin x$
50. $x^{5} e^{x}+x^{6} \log x$
51. $\frac{x^{2} \cos \frac{\pi}{4}}{\sin x}$
52. $x^{n} \log _{a} x e^{x}$
53. $\frac{e^{x}+\log x}{\sin x}$
54. $\frac{1+\log x}{1-\log x}$
55. $e^{x} \sin x+x^{n} \cos x$
56. If $y=\sqrt{x}+\frac{1}{\sqrt{x}}$, prove that $2 x \frac{d y}{d x}+y=2 \sqrt{x}$
57. If $y=\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}} \quad$ find $\frac{d y}{d x}$
58. If $y=\sqrt{\frac{x}{a}}+\sqrt{\frac{a}{x}}$, prove that
$(2 x y) \frac{d y}{d x}=\frac{x}{a}-\frac{a}{x}$
59. For the curve $f(x)=\left(x^{2}+6 x-5\right)(1-x)$, find the slope of the tangent at $x=3$.

LONG ANSWER TYPE QUESTIONS (6 MARKS)

Differentiate the following functions with respect to \mathbf{x} from first principle:
60. $\frac{\cos x}{x}$
61. $x^{2} \sin x$

Evaluate the following limits :

62. $\lim _{x \rightarrow \frac{\pi}{6}} \frac{2 \sin ^{2} x+\sin x-1}{2 \sin ^{2} x-3 \sin x+1}$
63. $\lim _{x \rightarrow 0} \frac{\cos 2 x-\cos 3 x}{\cos 4 x-1}$

ANSWERS

1. $\frac{1}{2}$
2. $\frac{1}{\sqrt{2}}$
3. ± 1
4. -5
5. $2 x \tan x+x^{2} \sec ^{2} x$
6. 0
7. 1
8. $3^{x} \log _{e} 3+3 x^{2}$
9. $3 x^{2}$
10. $\frac{1}{2}$
11. 3
12. $\frac{1}{2}$
13. 9
14. $\frac{1}{2}-\frac{2}{x^{2}}$
15. $\operatorname{cosec} x-x \cot x \operatorname{cosec} x$
16. $2^{\mathrm{x}} \log _{\mathrm{e}} 2$
17. $\frac{9}{2}$
18. $3 x^{2}-2 x-4$
19. $\lambda=-1$
20. $\frac{1}{2 \sqrt{2}}$
21. 1
22. $\frac{5}{2}(a+2)^{\frac{3}{2}}$
23. $\frac{1}{2}$
24. cosa
25. $-\frac{3}{2}$
26. 1
27. $-\frac{1}{3}$
28. $2 \cos 2$
29. $\frac{\mathrm{x}^{2}-1}{\mathrm{x}^{2}}$
30. $\frac{1}{\mathrm{x}}$
31. $-\operatorname{cosec}^{2} x$
32. $\quad 6-\frac{3}{2} x^{-\frac{1}{2}}+\frac{1}{2} x^{-\frac{3}{2}}$
33. $3 \mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}-1-\frac{3}{\mathrm{x}^{4}}$
34. $\frac{5}{2} a^{\frac{3}{7}}$
35. $\frac{m^{2}}{n^{2}}$
36. 2
37. $\sin ^{3} a$
38. 2
39. $\frac{1}{\mathrm{e}}$
40. $\frac{2}{3 \sqrt{3}}$
41. $\frac{1}{\sqrt{2 x+3}}$
42. e^{x}
43. - cosecx. cotx
44. $a^{x} \log _{e} a$
45. $3 x^{2}+\frac{3}{2 x^{5 / 2}}-\frac{9}{2} \sqrt{x}$
46.

49. $x^{2} e^{x}(3 \sin x+x \sin x+x \cos x)$
50. $x^{4}\left(5 e^{x}+x e^{x}+x+6 x \log x\right) \quad$ 51. $\frac{x \cos \frac{\pi}{4}(2 \sin x-x \cos x)}{\sin ^{2} x}$
52. $e^{x} x^{n-1}\left\{n \log _{a} x+\log a+x \log _{a} x\right\}$
53. $\frac{\left(e^{x}+\frac{1}{x}\right) \sin x-\left(e^{x}+\log x\right) \cos x}{\sin ^{2} x}$
54. $\frac{2}{x(1-\log x)^{2}}$
57. $\sec ^{2} x$
52. $\frac{-(x \sin x+\cos x)}{x^{2}}$
62. -3
55. $e^{x}\left(1+\frac{1}{x}+x+\log x\right)$
59. -46
61. $2 x \sin x+x^{2} \cos x$
63. $-\frac{5}{16}$

CHAPTER - 14

MATHEMATICAL REASONING

KEY POINTS

- A sentence is called a statement if it is either true or false but not both.
- The denial of a statement p is called its negative and is written as $\sim p$ and read as not p.
- Compound statement is made up of two or more simple statements. These simple statements are called component statements.
- 'And', 'or', 'If-then', 'only if' 'If and only if' etc. are connecting words, which are used to form a compound statement.
- Compound statement with 'And' is
(a) true if all its component statements are true
(b) false if any of its component statement is false
- Compound statement with 'Or' is
(a) true when at least one component statement is true
(b) false when both the component statements are false
- A statement with "If \mathbf{p} then \mathbf{q} " can be rewritten as
(a) p implies q
(b) p is sufficient condition for q
(c) q is necessary condition for p
(d) p only if q
(e) ($\sim q)$ implies $(\sim p)$
- If, in a compound statement containing the connective "or" all the alternatives cannot occur simultaneously, then the connecting word "or" is called as exclusive "or".
- If, in a compound statement containing the connective "or", all the alternative can occur simultaneously, then the connecting word "or" is called as inclusive "or".
- Contrapositive of the statement $\mathrm{p} \Rightarrow \mathrm{q}$ is the statement $\sim \mathrm{q} \Rightarrow \sim \mathrm{p}$
- Converse of the statement $p \Rightarrow q$ is the statement $q \Rightarrow p$
- "For all", "For every" are called universal quantifiers
- A statement is called valid or invalid according as it is true or false.

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

Identify which of the following are statements (Q. No 1 to 7)

1. Prime factors of 6 are 2 and 3 .
2. $x^{2}+6 x+3=0$
3. The earth is a planet.
4. There is no rain without clouds.
5. All complex numbers are real numbers.
6. Tomorrow is a holiday.
7. Answer this question.

Write negation of the following statements (Q. No 8 to 12)

8. All men are mortal.
9. π is not a rational number.
10. Every one in Spain speaks Spanish.
11. Zero is a positive number.

Write the component statements of the following compound statements

12. 7 is both odd and prime number.
13. All integers are positive or negative.
14. 36 is a multiple of 4,6 and 12 .
15. Jack and Jill went up the hill.

Identify the type 'Or' (Inclusive or Exclusive) used in the following statements (Q. No. 16 to 19)
16. Students can take French or Spanish as their third language.
17. To enter in a country you need a visa or citizenship card.
18. $\sqrt{2}$ is a rational number or an irrational number.
19. 125 is a multiple of 5 or 8 .

Which of the following statements are true or false. Give Reason.
(Question No. 20 to 23)
20. 48 is a multiple of 6,7 and 8
21. $\pi>2$ and $\pi<3$.
22. Earth is flat or it revolves around the moon.
23. $\sqrt{2}$ is a rational number or an irrational number.

Identify the quantifiers in the following statements (Q. No. 24 to 26)
24. For every integer p, \sqrt{p} is a real number.
25. There exists a capital for every country in the world.
26. There exists a number which is equal to its square.

Write the converse of the following statements (Q. No. 27 to 30)
27. If a number x is even then x^{2} is also even.
28. If $3 \times 7=21$ then $3+7=10$
29. If n is a prime number then n is odd.
30. Some thing is cold implies that it has low temperature.

Write contrapositive of the following statements (Q. No. 31 and 32)
31. If $5>7$ then $6>7$.
32. x is even number implies that x^{2} is divisible by 4 .
33. If a triangle is equilateral, it is isosceles.
34. Only if he does not tire he will win.
35. If a number is divisible by 9 , then it is divisible by 3 .
36. Something is cold implies that it has low temperature.
37. Check the validity of the statement 'An integer x is even if and only if x^{2} is even.'

ANSWERS

1. Statement
2. Not a statement
3. Statement
4. Statement
5. Statement
6. Not a statement
7. Not a Statement
8. All men are not mortal
9. π is a rational number.
10. Everyone in Spain doesn't speak Spanish.
11. Zero is not a positive number.
12. 7 is an odd number. 7 is a prime number.
13. All integer are positive. All integers are negative.
14. 36 is a multiple of 4 .

36 is a multiple of 6.
36 is a multiple of 12.
15. Jack went up the hill.

Jill went up the hill.
16. Exclusive
18. Exclusive
17. Inclusive
19. Exclusive
20. False, 48 is not a multiple of 7
21. False, π lies between 3 and 4
22. False
24. For every
26. There exists
23. True
25. For every, there exists
27. If x^{2} is even then x is even
28. If $3+7=10$ then $3 \times 7=21$
29. If n is odd then n a prime number.
30. If some thing has low temperature then it is cold.
31. If $6 \leq 7$ then $5 \leq 7$
32. If x^{2} is not divisible by 4 then x is not even.
33. If a trignale is not iosceles, then it is not equilateral.
34. If he tires, then he will not win.
35. If a number is not divisible by 3 , then it is not divisible by 9 .
36. If something does not have low temperature, then it is not cold.
37. Valid.

CHAPTER - 15

STATISTICS

- Range $=$ Largest observation - smallest observation.
- Mean deviation for ungrouped data or raw data

$$
\begin{aligned}
& \text { M.D. }(\bar{x})=\frac{\sum\left|x_{i}-\bar{x}\right|}{n} \\
& \text { M.D. }(M)=\frac{\sum\left|x_{i}-M\right|}{n}, \quad M=\text { Median }
\end{aligned}
$$

- Mean deviation for grouped data (Discrete frequency distribution and Continuous frequency distribution).

$$
\begin{aligned}
& \text { M.D. }(\bar{x})=\frac{\sum f_{i}\left|x_{i}-\bar{x}\right|}{N} \\
& \text { M.D. }(M)=\frac{\sum f_{i}\left|x_{i}-M\right|}{N}
\end{aligned}
$$

where $N=\Sigma f_{i}$

- Standard deviation ' σ ' is positive square root of variance.

$$
\sigma=\sqrt{\text { Variance }}
$$

- Variance σ^{2} and standard deviation (SD) σ for ungrouped data

$$
\begin{aligned}
& \sigma^{2}=\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2} \\
& S D=\sigma=\sqrt{\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

- Standard deviation of a discrete frequency distribution

$$
\sigma=\sqrt{\frac{1}{N} \sum f_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{1}{N} \sqrt{N \sum f_{i} x_{i}{ }^{2}-\left(\sum f_{i} x_{i}\right)^{2}}
$$

- Standard deviation of a continuous frequency distribution

$$
\sigma=\sqrt{\frac{1}{N} \sum f_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{1}{N} \sqrt{N \sum f_{i} x_{i}{ }^{2}-\left(\sum f_{i} x_{i}\right)^{2}}
$$

where x_{i} are the midpoints of the classes.

- Short cut method to find variance and standard deviation

$$
\begin{aligned}
\sigma^{2} & =\frac{h^{2}}{N^{2}}\left[N \sum f_{i} y_{i}^{2}-\left(\sum f_{i} y_{i}\right)^{2}\right] \\
\sigma & =\frac{h}{N} \sqrt{N \sum f_{i} y_{i}{ }^{2}-\left(\sum f_{i} y_{i}\right)^{2}} \\
\text { where } y_{i} & =\frac{x_{i}-A}{h}
\end{aligned}
$$

- Coefficient of variation (C.V) $=\frac{\sigma}{\overline{\mathrm{x}}} \times 100, \overline{\mathrm{x}} \neq 0$
- If each observation is multiplied by a positive constant k then variance of the resulting observations becomes k^{2} times of the original value and standard deviation becomes k times of the original value.
- If each observation is increased by k, where k is positive or negative, the variance and standard deviation remains same.
- Standard deviation is independent of choice of origin but depends on the scale of measurement.
- The series having higher coefficient of variation is called more variable than the other. While the series having lesser coefficient of variation is called more consistent or more stable. For series with equal means the series with lesser standard deviation is more stable.

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Define dispersion.
2. What is the range of the data
$7,12,18,22,11,6,26 ?$
3. The variance of 10 observations is 16 and their mean is 12 . If each observation is multiplied by 4 , what are the new mean and the new variance?
4. The standard deviation of 25 observations is 4 and their mean is 25 . If each observation is increased by 10, what are the new mean and the new standard deviation?

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

Calculate the mean deviation about mean for the following data
5.
$7,6,10,12,13,4,8,20$
6.
$13,17,16,14,11,13,10,16,11,18,12,17$
Calculate the mean deviation about median for the following data
7.
8.

40, 42, 44, 46, 48
$22,24,30,27,29,35,25,28,41,42$
Calculate the mean, variance and standard deviation of the following data
9.
$6,7,10,12,13,4,812$
10.
$15,22,27,11,9,21,14,9$
11. Coefficients of variation of two distribution are 60 and 80 and their standard deviations are 21 and 36 . What are their means?
12. On study of the weights of boys and girls in an institution following data are obtained.

	Boys	Girls
Number	100	50
Mean	60 kgs.	45 kgs.
Variance	9	4

Whose weight is more variable?
13. Mean of 5 observations is 6 and their standard deviation is 2 . If the three observations are 5, 7 and 9 then find the other two observations.
14. Calculate the possible values of x if standard deviation of the numbers $2,3,2 x$ and 11 is 3.5 .
15. Mean and standard deviation of the data having 18 observations were found to be 7 and 4 respectively. Later it was found that 12 was miscopied as 21 in calculation. Find the correct mean and the correct standard deviation.

LONG ANSWER TYPE QUESTIONS (6 MARKS)

Calculate the mean deviation about mean for the following data.
16.

Size	2	4	6	8	10	12	14	16
Frequency	2	2	4	5	3	2	1	1
Marks	10	30	50		70	90		
Frequency	4	24	28	16	8			

Calculate the mean deviation about median for the following data
18.

Marks	10	11	12	13	14	
Frequency	3	12	18	12	5	
x	10	15	20	25	30	35
	7	3	8	5	6	8

20. Calculate the mean and standard deviation for the following data

Wages in Rs/hour	45	50	55	60	65	70	75	80
Number of Workers	3	5	8	7	9	7	4	7

21. Calculate the standard deviation for the following data

Weight	18	19	20	21	22	23	24	25	26	27
Number of students	3	7	11	14	18	17	13	8	5	4

Calculate the mean deviation about mean for the following data
22.

Classes	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$

Frequency	2	3	8	14	8	3	2

23.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$

Number of Students	5	8	15	16	6

24. Find the mean deviation about the median

Weight (in kg.)	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
Number of Persons	8	10	10	16	4	2

25. Calculate the mean deviation about median for the following distribution

Classes	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	5	10	20	5	10

26. Find the mean and standard deviation for the following

C.I.	$25-35$	$35-45$	$45-55$	$55-65$	$65-75$	$75-85$	$85-95$

Frequency	21	12	30	45	50	37	5

27. Find the mean and standard deviation of the following data

Ages under (in years)	10	20	30	40	50	60	70	80
Number of members	15	30	53	75	100	110	115	125

28. Find the coefficient of variation of the following data

Classes	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$	$70-79$	$80-89$	$90-99$
Frequency	5	12	15	20	18	10	6	4

29. Which group of students is more stable- Group A or Group B?

Classes	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$	$65-75$
Number in Group A	4	12	22	30	23	5	4
Number in Group B	5	15	20	33	15	10	2

30. For a group of 200 candidates, the mean and standard deviation of scores were found to be 40 and 15 respectively. Later on it was discovered that the scores of 43 and 35 were misread as 34 and 53 respectively. Find the correct mean and correct standard deviation.
*31. Find range of the following data.

$\boldsymbol{x i}$	3	4	7	9	10	15
$\boldsymbol{f i}$	2	12	5	8	9	3

ANSWERS

1. Dispersion is scattering of the observations around the central value of the observations.
2. 20
3. 35,4
4. 2.33
5. 4.7
6. 16. 38.68. 6.22
1. Boys weight
2. $3,7 / 3$
3. 48,256
4. 3.75
5. 2.4
6. $9,9.25,3.04$
7. 35,45
8. 3 and 6
9. $6.5,2.5$
10. 2.8
11. 0.8
12. 10.1
13. 63.6, 10.35
14. 2.1807
15. 10
16. 9.44
17. 11.44
18. 9
19. 61.1, 15.93
20. 31.24
21. 39.955, 14.9.
22. $35.16,19.76$
23. Group A
*31. 12

CHAPTER - 16

PROBABILITY

- Random Experiment : If an experiment has more than one possible out come and it is not possible to predict the outcome in advance then experiment is called random experiment.
- Sample Space : The collection of all possible outcomes of a random experiment is called sample space associated with it. Each element of the sample space(set) is called a sample point.
- Some examples of random experiments and their sample spaces
(i) A coin is tossed
$S=\{H, T\}, \quad n(S)=2$
Where $n(S)$ is the number of elements in the sample space S.
(ii) A die is thrown
$S=\{1,2,3,4,5,6], n(S)=6$
(iii) A card is drawn from a pack of 52 cards
$\mathrm{n}(\mathrm{S})=52$.
(iv) Two coins are tossed
$S=\{H H, H T, T H, T T\}, n(S)=4$.
(v) Two dice are thrown

$$
\begin{aligned}
& S=\left\{\begin{array}{l}
11,12,13,14,15,16, \\
21,22,----, 26, \\
\vdots \\
61,62,-----, 66
\end{array}\right\} \\
& n(S)=36
\end{aligned}
$$

(vi) Two cards are drawn from a well shuffled pack of 52 cards
(a) with replacement $n(S)=52 \times 52$
(b) without replacement $n(S)={ }^{52} \mathrm{C}_{2}$

- Event : A subset of the sample space associated with a random experiment is called an event.
- Simple Event : Simple event is a single possible outcome of an experiment.
- Compound Event : Compound event is the joint occurrence of two or more simple events.
- Sure Event : If event is same as the sample space of the experiment, then event is called sure event.
- Impossible Event : Let S be the sample space of the experiment, $\phi \subset \mathrm{S}$, ϕ is an event called impossible event.
- Exhaustive and Mutually Exclusive Events: Events $E_{1}, E_{2}, E_{3}-----E_{n}$ are mutually exclusive and exhaustive if
$E_{1} \cup E_{2} U E_{3} U \cdots----U E_{n}=S$ and $E_{i} \cap E_{j}=\phi$ for all $i \neq j$
- Probability of an Event : For a finite sample space S with equally likely outcomes, probability of an event A is $P(A)=\frac{n(A)}{n(S)}$, where $n(A)$ is number of elements in A and $n(S)$ is number of elements in set S and $0 \leq P(A) \leq 1$.
(a) If A and B are any two events then

$$
\begin{aligned}
P(A \text { or } B) & =P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& =P(A)+P(B)-P(A \text { and } B)
\end{aligned}
$$

(b) If A and B are mutually exclusive events then

$$
P(A \cup B)=P(A)+P(B)
$$

(c)

$$
P(A)+P(\bar{A})=1
$$

$$
\text { or } P(A)+P(\text { not } A)=1
$$

(d) P (Sure event) $=1$
(e) P (impossible event) $=0$

- $P(A-B)=P(A)-P(A \cap B)=P(A \cap \bar{B})$
- If $S=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ then
(i) $0 \leq P\left(w_{i}\right) \leq 1$ for each $w_{i} \in S$
(ii) $P\left(w_{1}\right)+P\left(w_{2}\right)+\ldots \ldots \ldots .+P\left(w_{n}\right)=1$
(iii) $P(A)=\Sigma P\left(w_{i}\right)$ for any event A containing elementary events w_{i}.
- $P(\bar{A} \cap \bar{B})=1-P(A \cup B)$
- Addition theorem for three events

Let E, F and G be any three events associated with a random experiment, then
$P(E \cup F \cup G)=P(E)+P(F)+P(G)-P(E \cap F)-P(F \cap G)$ $-P(E \cap G)+P(E \cap F \cap G)$

- Let E and F be two events associated with a random experiment then
(i) $P(E \cap \bar{F})=P(E)-P(E \cap F)$
(ii) $P(\bar{E} \cap F)=P(F)-P(E \cap F)$
(iii) $P(\bar{E} \cap \bar{F})=P(\overline{E \cup F})=1-P(E \cup F)$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

Describe the Sample Space for the following experiments (Q. No. 1 to 4)

1. A coin is tossed twice and number of heads is recorded.
2. A card is drawn from a deck of playing cards and its colour is noted.
3. A coin is tossed repeatedly until a tail comes up for the first time.
4. A coin is tossed. If it shows head we draw a ball from a bag consisting of 2 red and 3 black balls. If it shows tail, coin is tossed again.
5. Write an example of an impossible event.
6. Write an example of a sure event.
7. Three coins are tossed. Write three events which are mutually exclusive and exhaustive.
8. A coin is tossed n times. What is the number of elements in its sample space?

If E, F and G are the subsets representing the events of a sample space S. What are the sets representing the following events? (Q No 9 to 12).
9. Out of three events atleast two events occur.
10. Out of three events only one occurs.
11. Out of three events only E occurs.
12. Out of three events exactly two events occur.
13. If probability of event A is 1 then what is the type of event 'not A '?
14. One number is chosen at random from the numbers 1 to 21 . What is the probability that it is prime?
15. What is the probability that a given two digit number is divisible by 15 ?
16. If $P(A \cup B)=P(A)+P(B)$, then what can be said about the events A and B ?
17. If A and B are mutually exclusive events then what is the probability of $A \cap B$?
18. If A and B are mutually exclusive and exhaustive events then what is the probability of $A \cup B$?
19. A box contain 1 red and 3 identical white balls. Two balls are drawn at random in succession with replacement. Write sample space for this experiment.
20. A box contain 1 red and 3 identical white balls. Two balls are drawn at radom in succession without replacement. Write the sample space for this experiment.
21. A card is drawn from a pack of 52 cards. Find the probability of getting:
(i) a jack or a queen
(ii) a king or a diamond
(iii) a heart or a club
(iv) either a red or a face card.
(v) neither a heart nor a king
(vi) neither an ace nor a jack

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

22. The letters of the word EQUATION are arranged in a row. Find the probability that
(i) all vowels are together
(ii) the arrangement starts with a vowel and ends with a consonant.
23. An urn contains 5 blue and an unknown number x of red balls. Two balls are drawn at random. If the probability of both of them being blue is $\frac{5}{14}$, find x.
24. Out of 8 points in a plane 5 are collinear. Find the probability that 3 points selected at random form a triangle.
25. Find the probability of almost two tails or atleast two heads in a toss of three coins.
26. A, B and C are events associated with a random experiment such that $P(A)=0.3, P(B)=0.4, P(C)=0.8, P(A \cap B)=0.08 P(A \cap C)=0.28$ and $P(A \cap B \cap C)=0.09$. If $P(A \cup B \cup C) \geq 0.75$ then prove that $P(B \cap C)$ lies in the interval $[0.23,0.48]$
$[$ Hint $: P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)$ $-P(A \cap C)+P(A \cap B \cap C)]$.
27. For a post three persons A, B and C appear in the interview. The probability of A being selected is twice that of B and the probability of B being selected is twice that of C. The post is filled. What are the probabilities of A, B and C being selected?
28. A and B are two candidates seeking admission in college. The probability that A is selected is 0.5 and the probability that both A and B are selected is utmost 0.3 . Show that the probability of B being selected is utmost 0.8 .
29. $S=\{1,2,3, \cdots---30\}, A=\{x: x$ is multiple of 7$\} B=\{x: x$ is multiple of $5\}, C=\{x: x$ is a multiple of 3$\}$. If x is a member of S chosen at random find the probability that
(i) $x \in A \cup B$
(ii) $x \in B \cap C$
(iii) $\mathrm{x} \in \mathrm{A} \cap \mathrm{C}^{\prime}$
30. A number of 4 different digits is formed by using 1, 2, 3, 4, 5, 6, 7. Find the probability that it is divisible by 5 .
31. A bag contains 5 red, 4 blue and an unknown number of m green balls. Two balls are drawn. If probability of both being green is $\frac{1}{7}$ find m.
32. A ball is drawn from a bag containing 20 balls numbered 1 to 20 . Find the probability that the ball bears a number divisible by 5 or 7 ?
33. What is the probability that a leap year selected at random will contain 53 Tuesdays?

ANSWERS

1. $\{0,1,2\}$
2. \{Red, Black\}
3. $\{T, H T, H H T, H H H T$ \qquad .)
4. $\left\{\mathrm{HR}_{1}, \mathrm{HR}_{2}, \mathrm{HB}_{1}, \mathrm{HB}_{2}, \mathrm{HB}_{3}, \mathrm{TH}, \mathrm{TT}\right\}$
5. Getting a number 8 when a die is rolled
6. Getting a number less then 7 when a die is rolled
7. $A=\{H H H, H H T, H T H, T H H\}$
$B=\{H T T, T H T, H T T\}$
$C=\{T T T\}$
8. 2^{n}
9. $(E \cap F \cap G) \cup\left(E^{\prime} \cap F \cap G\right) \cup\left(E \cap F^{\prime} \cap G\right) \cap\left(E \cap F \cap G^{\prime}\right)$
10. $\left(E \cap F^{\prime} \cap G\right) \cup\left(E^{\prime} \cap F \cap G^{\prime}\right) \cup\left(E^{\prime} \cap F^{\prime} \cap G\right)$
11. $\left(E \cap F^{\prime} \cap G^{\prime}\right)$
12. $\left(E \cap F \cap G^{\prime}\right) \cup\left(E \cap F^{\prime} \cap G\right) \cup\left(E^{\prime} \cap F \cap G\right)$
13. Impossible event
14. $\frac{1}{15}$
15. 0
16. $S=\{R R, R W, W R, W W\}$
17. $S=\{R W, W R, W W\}$
18. (i) $\frac{2}{13}$;
(ii) $\frac{4}{13}$;
(iii) $\frac{1}{2}$;
(iv) $\frac{8}{13}$;
(v) $\frac{9}{13}$;
(vi) $\frac{11}{13}$
19. (i) $\frac{1}{14}$ (ii) $\frac{15}{56}$
20. 3
21. $\frac{23}{28}$
22. $\quad 0.23 \leq \mathrm{P}(\mathrm{B}) \leq 0.48$
23. (i) $\frac{1}{3}$, (ii) $\frac{1}{15}$, (iii) $\frac{1}{10}$
24. 6
25. $\frac{2}{7}$.
26. $\frac{7}{8}$
27. $\frac{4}{7}, \frac{2}{7}, \frac{1}{7}$
28. $\frac{1}{7}$
29. $\frac{3}{10}$.

MODEL TEST PAPER - I

Time : 3 hours
Maximum Marks : 100

General Instructions :

(i) All questions are compulsory.
(ii) Q. 1 to Q. 10 of Section A are of 1 mark each.
(iii) Q. 11 to Q. 22 of Section B are of 4 marks each.
(iv) Q. 23 to Q. 29 of Section C are of 6 marks each.
(v) There is no overall choice. However an internal choice has been provided in some questions.

SECTION A

1. $A=\{1,2,3,4,5,6\}, B=\{2,3,5,7,9\}$
$U=\{1,2,3,4, \ldots .10\}$, Write $(A-B)^{\prime}$
2. Express $(1-2 \mathrm{i})^{-2}$ in the standard form $a+i b$.
3. Find $20^{\text {th }}$ term from end of the A.P. 3, 7, 11, 407.
4. Evaluate $5^{2}+6^{2}+7^{2}+\ldots .+20^{2}$
5. Evaluate $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{x}$
6. Evaluate $\lim _{x \rightarrow 0} \frac{\sqrt{1+x+x^{2}}-1}{x}$
7. A bag contains 9 red, 7 white and 4 black balls. If two balls are drawn at random, find the probability that both balls are red.
8. What is the probability that an ordinary year has 53 Sundays?
9. Write the contrapositive of the following statement :
"it two lines are parallel, then they do not intersect in the same plane."
10. Check the validity of the compound statement " 80 is a multiple of 5 and 4."

SECTION B

11. Find the derivative of $\frac{\sin x}{x}$ with respect to x from first principle.

OR

Find the derivative of $\frac{\sin x-x \cos x}{x \sin x+\cos x}$ with respect to x.
12. Two students Ajay and Aman appeared in an interview. The probability that Ajay will qualify the interview is 0.16 and that Aman will qualify the interview is 0.12 . The probability that both will qualify is 0.04 . Find the probability that-
(a) Both Ajay and Aman will not qualify.
(b) Only Aman qualifies.
13. Find domain and range of the real function $f(x)=\frac{3}{1-x^{2}}$
14. Let R be a relation in set $A=\{1,2,3,4,5,6,7\}$ defined as $R=\{(a, b)$: a divides $b, a \neq b\}$. Write R in Roster form and hence write its domain and range.

OR

Draw graph of $f(x)=2+|x-1|$.
15. Solve : $\sin ^{2} x-\cos x=\frac{1}{4}$.
16. Prove that $\cos 2 \theta \cdot \cos \frac{\theta}{2}-\cos 3 \theta \cos \frac{9 \theta}{2}=\sin 5 \theta \sin \frac{5 \theta}{2}$.
17. If x and y are any two distinct integers, then prove by mathematical induction that $x^{n}-y^{n}$ is divisible by $(x-y) \forall n \in N$.
18. If $x+i y=(a+i b)^{1 / 3}$, then show that $\frac{a}{x}+\frac{b}{y}=4\left(x^{2}-y^{2}\right)$

OR

Find the square roots of the complex number $7-24 i$
19. Find the equation of the circle passing through points (1, -2) and (4, $-3)$ and has its centre on the line $3 x+4 y=7$.

OR

The foci of a hyperbola coincide with of the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$. Find the equation of the hyperbola, if its eccentricity is 2.
20. Find the coordinates of the point, at which yz plane divides the line segment joining points $(4,8,10)$ and $(6,10,-8)$.
21. How many words can be made from the letters of the word 'Mathematics', in which all vowels are never together.
22. From a class of 20 students, 8 are to be chosen for an excusion party. There are two students who decide that either both of them will join or none of the two will join. In how many ways can they be choosen?

SECTION C

23. In a survey of 25 students, it was found that 15 had taken mathematics, 12 had taken physics and 11 had taken chemistry, 5 had taken mathematics and chemistry, 9 had taken mathematics and physics, 4 had taken physics and chemistry and 3 had taken all the three subjects. Find the number of students who had taken
(i) atleast one of the three subjects,
(ii) only one of the three subjects.
24. Prove that $\cos ^{3} A+\cos ^{3}\left(\frac{2 \pi}{3}+A\right)+\cos ^{3}\left(\frac{4 \pi}{3}+A\right)=\frac{3}{4} \cos 3 A$.
25. Solve the following system of inequations graphically

$$
x+2 y \leq 40,3 x+y \geq 30,4 x+3 y \geq 60, x \geq 0, y \geq 0
$$

OR

A manufacturer has 600 litres of a 12% solution of acid. How many litres of a 30% acid solution must be added to it so that acid content in the resulting mixture will be more than 15% but less than 18% ?
26. Find n, it the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left[\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right]^{n}$ is $\sqrt{6}: 1$.
27. The sum of two numbers is 6 times their geometric mean. Show that the numbers are in the ratio $(3+2 \sqrt{2}):(3-2 \sqrt{2})$.
28. Find the image of the point $(3,8)$ with respect to the line $x+3 y=7$ assuming the line to be a plane mirror.
29. Calculate mean and standard deviation for the following data

Age

$$
\begin{align*}
& 20-30 \\
& 30-40 \\
& 40-50 \\
& 50-60 \\
& 60-70 \\
& 70-80 \tag{51}\\
& 80-90
\end{align*}
$$

Number of persons
351122
$50-60 \quad 141$ 130

2

OR

The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 12 was misread as 8 . Calculate correct mean and correct standard deviation.

ANSWERS

SECTION A

1. $(A-B)^{1}=\{2,3,5,7,8,9,10\}$
2. $-\frac{3}{25}+\frac{4}{25} i$
3. 331
4. 2840
5. 2
6. $\frac{1}{2}$
7. $\frac{18}{95}$
8. $\frac{1}{7}$
9. If two lines intersect in zone plane then they are not parallel.
10. Statement in true.

SECTION B

11. $\frac{x \cos x-\sin x}{x^{2}}$ or $\frac{x^{2}}{(x \sin x+\cos x)^{2}}$
12.

(a) 0.76
(b) 0.08
13. Domain $=R-\{-1,1\}$

Range $=(-\infty, 0), \cup[3, \infty)$
14. $R=\{(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,6),(3,6)\}$

Domain $=\{1,2,3\}$
Range $=\{2,3,4,5,6,7\}$

15. $\mathrm{x}=2 \mathrm{x} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{z}$
18. OR $4-3 i$ and $-4+3 i$
19. $15 x^{2}+15 y^{2}-94 x+18 y+55=0$

OR

$$
\frac{x^{2}}{4}-\frac{y^{2}}{12}=1
$$

20. (0, 4, 46)
21. 4868640
22. 62322
23. (i) 23 ;
(ii) 11
24.

26. $n=10$
29. \quad Mean $=55.1$
S.D. $=11.874$

OR

Correct Mech $=10.2$
Correct S.D. $=1.99$

MODEL TEST PAPER - II

Time: 3 hours
Maximum Marks : 100

General Instructions :

(i) All questions are compulsory.
(ii) The question paper consists of 29 questions divided into three Sections A, B and C.
(iii) Section A comprises of 10 questions of one mark each. Section B comprises of 12 questions of four marks each and Section C comprises of 7 questions of six marks each.
(iv) There is no overall choice. However, an internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions.

SECTION A

1. Determine the range of the relation R defined by
$R=\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$
2. What is the probability that a letter chosen at random from a word 'EQUALITY' is a vowel ?
3. Write the value of $\sin 75^{\circ}$.
4. Find the derivative of $\frac{1}{a x^{2}+b}$ with respect to x.
5. Find: $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}+1}$
6. A coin is tossed twice, then find the probability of getting at least one head.
7. Find the value of k for which the line $(k-3) x-\left(4-k^{2}\right) y+K^{2}-7 k+$ $6=0$ is parallel to the x-axis.
8. Find the value of k for which $\frac{-2}{7}, k, \frac{-7}{2}$ are in G.P.
9. Express $\mathrm{i}^{9}+\mathrm{i}^{10}+\mathrm{i}^{11}+\mathrm{i}^{12}$ in the form of $\mathrm{a}+\mathrm{ib}$.
10. Write the general solution of $\cos x=\frac{1}{2}$.

SECTION B

11. Find the derivative of $f(x)=\operatorname{cosec} x$ with respect to x from the first principle.

Evaluate : $\lim _{x \rightarrow-3} \frac{x^{2}-9}{\sqrt{x^{2}+16}-5}$.
12. At what point the origin be shifted, if the co-ordinates of a point $(4,5)$ becomes $(-3,9)$?
13. Find the euqation of the circle passing through $(0,0)$ and making intercepts a and b on the co-ordinate exis.

OR

Find the co-ordinates of the foci, the vertices, the eccentricity and the length of the latus-rectum of the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$.
14. Fine the co-ordinates of the points which trisect the line segment joining the point $P(4,2,-6)$ and $Q(10,-16,6)$.
15. A youngman visits a hospital for medical check-up. The probability that he has lungs problem is 0.45 , heart problem is 0.29 and either lungs or heart problem is 0.47 . What is the probability that he has both types of problems : lungs as well as heart ? Out of 1000 persons, how many are expected to have both types of problem ? What should be done to keep good health and the hospital away? Describe briefly.
16. Find the confficient of x^{5} in the product $(1+2 x)^{6}(1-x)^{7}$ using binomial theorem.

OR

Show that the coefficient of the middle term in the expanision of $(1+x)^{2 n}$ is equal to the sum of the coefficients of two middle terms in the expansion of $(1+x)^{2 n-1}$.
17. Find the sum of sequence $7,77,777,7777$, \qquad to n terms.
18. Determine the number of 5 -card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
19. Convert $\frac{1+7 i}{(2-i)^{2}}$ in the polar form.
20. Prove that: $\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x$

OR

If $\sin x=\frac{3}{5}, \cos y=\frac{-12}{13}$, were x any y both lie in second quadrant, find the value of $\sin (x+y)$.
21. Write the contrapositive of (i) convere of (ii) negation of (iii) and identify the quantifier in (iv)
(i) If a number is divisible by 9 , then it is divisibily by 3 .
(ii) if x is a prime number, then x is odd.
(iii) $\sqrt{2}$ is not a complex number.
(iv) For every prime number P, \sqrt{P} is an irrational number.
22. If $U=\{1,2,3, \ldots \ldots, 15\}, A=\{3,6,9,12,15\}, B=\{1,2,3,4,5\}, C=\{2$, $4,6,8,10,12,14\}$, the find.
(i) A^{\prime} (ii) $A-B$ (iii) $A \cup B$ (iv) $B \cap C$

SECTION C

23. Calculate mean and variance for the following distribution :

Classes	$0-30$	$30-60$	$60-90$	$90-120$	$120-150$	$150-180$	$180-210$
Frequency	2	3	5	10	3	5	2

OR

The mean of 5 observations is 4.4 and their variance is 8.24 . If three of the observation are 1,2 and 6 , find the other two obervations.
24. The ratio of the A.M. and G.M. of two positie number a and b is $m: n$. show that $: a: b=\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)$
25. Prove the following by using the principle of mathematical induction for all $n \in N: n(n+1)(n+5)$ is a multiple of 3 .
26. In any triangle $A B C$, prove that :
$\left(b^{2}-c^{2}\right) \cot A+\left(c^{2}-a^{2}\right) \cot B+\left(a^{2}-b^{2}\right) \cot C=0$

OR

Prove that : $\cos ^{2} x+\cos ^{2}\left(x+\frac{\pi}{3}\right)+\cos ^{2}\left(x-\frac{\pi}{3}\right)=\frac{3}{2}$.
27. A solution of 8% boric acid is to be diluted by adding a 2% boric acid solution to it. The resulting mixture is to be more than 4% but less than 6% boric acid. If we have 640 litres of the 8% solution, how many litres of the 2% solution will have to be added ?
28. In a survey, it is found that 105 people take X brand pan-masala, 130 take Y brand pan-masala and 145 take Z brand pan-masala. If 70 people take X brand as well as Y brand, 75 take Y brand as well as Z brand as well as Z brand 60 take X brand as well as Z brand and 40 take all the three, find how many people are surveyed who take the pan-masala of any kind ? How many take Z brand pan-masala only. As a student what measures you take to spread awareness against pan-masala in society?
29. Prove that : $\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ}=\frac{3}{16}$

MODEL TEST PAPER - I

Time : 3 hours
SOLUTIONS AND MARKING SCHEME
Marks

SECTION A

1. $\{5,6,7,8,9,10\} \quad 1$
2. $\frac{1}{2}$
3. $\frac{\sqrt{3}+1}{2 \sqrt{2}}$
4. $\frac{-2 a x}{\left(a x^{2}+b\right)^{2}}$
5. 0
6. $\frac{3}{4}$
7. 3
8. ± 1
9. $0+0 i$
10. $2 \mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{z}$

SECTION B

11. $\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
\begin{align*}
& \therefore \frac{d}{d x}(\operatorname{cosec} x)=\lim _{h \rightarrow 0} \frac{\operatorname{cosec}(x+h)-\operatorname{cosec} x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{\sin (x+h)}-\frac{1}{\sin x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x-\sin (x+h)}{h \sin x \sin (x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-2 \sin \frac{h}{2} \cos \left(x+\frac{h}{2}\right)}{h \sin x \sin (x+h)} \\
& =(-1) \lim _{h \rightarrow 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \cdot \lim _{h \rightarrow 0} \frac{\cos \left(x+\frac{h}{2}\right)}{\sin x \sin (x+h)} \\
& =(-1) \frac{\cos x}{\sin x \sin x}=\cot x \operatorname{cosec} x \\
& \lim _{x \rightarrow-3} \frac{x^{2}-9}{\sqrt{x^{2}+16}-5} \\
& =\lim _{x \rightarrow-3} \frac{x^{2}-9}{\sqrt{x^{2}+16}-5} \times \frac{\sqrt{x^{2}+16}+5}{\sqrt{x^{2}+16}+5} \tag{1}\\
& =\lim _{x \rightarrow-3} \frac{\left(x^{2}-9\right)\left(\sqrt{x^{2}+16}+5\right)}{\left(x^{2}+16\right)-25} \tag{1}\\
& =\lim _{x \rightarrow-3}\left(\sqrt{x^{2}+16}+5\right) \tag{1}\\
& =\sqrt{9+16}+5
\end{align*}
$$

$$
=5+5=10
$$

12. Let the origin be shifted at a point (h,k).

The Original co-ordinates of a point are $(4,5)=(x, y)$
The new co-ordinates of a point are $(-3,9)=(X, Y)$

$$
X+h=-3+h \text { and } Y+k=9+k \text { for } x=4 \text { and } y=5
$$

$\therefore \quad-3+\mathrm{h}=4$ and $9+\mathrm{k}=5$
$\Rightarrow \quad \mathrm{h}=7, \mathrm{k}=-4$
Hence, the origin be shifted at $(7,-4)$.
13.

Obiviously the circle passing through $O(0,0), A(a, 0)$ and $B(0, b) \quad 1$
So $\quad \angle \mathrm{AOB}=\pi / 2$
So ($A(a, 0), B(0 . b)$ are the co-ordinates of end points of diameter of circle.

So equation of circle is

$$
\begin{array}{rlr}
& (x-a)(x-0)+(y-0)(y-b)=0 \\
\Rightarrow & x^{2}+y^{2}-a x-b y=0 & 1
\end{array}
$$

$$
\frac{x^{2}}{(7)^{2}}+\frac{y^{2}}{(6)^{2}}=1
$$

Co-ordinates of foci $=(\pm \sqrt{13}, 0)$
Co-ordinates of vertices $=(\pm 7,0)$

$$
\begin{equation*}
e=\frac{\sqrt{13}}{7} \tag{1}
\end{equation*}
$$

Length of latus-rectum $=\frac{72}{7}$
14.

Let A and B be the points of triesection of $P Q$.
A divides PQ in the ratio $1: 2$.
B dividaas $P Q$ in the ratio $2: 1$. $1 / 2$
$\therefore \quad \mathrm{A} \equiv\left(\frac{1 \times 10+2 \times 4}{1+2}, \frac{1 \times(-16)+2 \times 2}{1+2}, \frac{1 \times 6+2 \times(-6)}{1+2}\right) \quad 1$
i.e. A is $(6,-4,-2)$.
$1 / 2$
and

$$
\mathrm{B} \equiv\left(\frac{2 \times 10+1 \times 4}{2+1}, \frac{2 \times(-16)+1 \times 2}{2+1}, \frac{2 \times 6+1 \times(-6)}{2+1}\right) \quad 1
$$

i.e., B is $(8,-10,2)$.
$1 / 2$
15. let E_{1} be the event for lungs problem and E_{2} be the event for heart problem.

$$
\begin{align*}
P\left(E_{1}\right) & =0.45, P\left(E_{2}\right)=0.29 \\
P\left(E_{1} \cup E_{2}\right) & =0.47 \\
P\left(E_{1} \cup E_{2}\right) & =P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right) \\
0.47 & =0.45+0.29-P\left(E_{1} \cap E_{2}\right) \\
P\left(E_{1} \cap E_{2}\right) & =0.74-0.47=0.27 \tag{1}
\end{align*}
$$

The expectation $=0.27 \times 1000=270$ persons.
One should do (i) regular physical exercise, (ii) walking, (iii) playing some games, (iv) avoid junk food and take healthy food, (v) avoid tension and worry.
16. $(1+2 x)^{6}(1-x)^{7}$

$$
\begin{align*}
&=\left\{{ }^{6} \mathrm{C}_{0}+{ }^{6} \mathrm{C}_{1}(2 \mathrm{x})+{ }^{6} \mathrm{C}_{2}(2 \mathrm{x})^{2}+{ }^{6} \mathrm{C}_{3}(2 \mathrm{x})^{3}+{ }^{6} \mathrm{C}_{4}(2 \mathrm{x})^{4}+{ }^{6} \mathrm{C}_{5}(2 \mathrm{x})^{5}+{ }^{6} \mathrm{C}_{6}(2 \mathrm{x})^{6}\right\} \\
& \times\left\{^{7} \mathrm{C}_{0}+{ }^{7} \mathrm{C}_{1}(-\mathrm{x})+{ }^{7} \mathrm{C}_{3}(-\mathrm{x})^{3}+{ }^{7} \mathrm{C}_{4}(-\mathrm{x})^{4}+{ }^{7} \mathrm{C}_{4}(-\mathrm{x})^{5}+{ }^{7} \mathrm{C}_{6}(-\mathrm{x})^{6}+{ }^{7} \mathrm{C}_{7}(-\mathrm{x})^{7}\right\} \\
&=\left(1+12 \mathrm{x}+60 \mathrm{x}^{2}+160 \mathrm{x}^{3}+240 \mathrm{x}^{4}+192 x^{5}+192 x^{5}+64 x^{6}\right) \\
& \times\left(1-7 \mathrm{x}+21 \mathrm{x}^{2}+35 \mathrm{x}^{3}+35 \mathrm{x}^{4}-21 \mathrm{x}^{5}+7 \mathrm{x}^{6}-\mathrm{x}^{7}\right) \tag{2}
\end{align*}
$$

Coefficient of x^{5}

$$
\begin{align*}
= & 1 \times(-21)+12 \times(35)+60 \times(-35)+160 \\
& +(21)+240 \times(-7)+192 \times 1 \tag{1}\\
= & 3972-3801 \\
= & 171 \tag{1}
\end{align*}
$$

OR

as $2 n$ is even
So middle term $\left(\right.$ of $(1+x)^{2 n}=(n+1)$ th term.

$$
\begin{equation*}
={ }^{2 n} C_{n} X^{n} \tag{1}
\end{equation*}
$$

Coefficient of $x^{n}={ }^{2 n} C_{n}$
similarly, middle term of $(1+x)^{2 n-1}=n$th and $(n+1)$ th term
The coefficient of these terms are ${ }^{2 n-1} C_{n-1}$ and ${ }^{2 n-1} C_{n}$ respectively. $11 / 2$ For showing ${ }^{2 n-1} C^{n-1}+{ }^{2 n-1} C_{n}={ }^{2 n} C_{n}$
17. $\mathrm{S}_{\mathrm{n}}=7+77+777+7777+\ldots \ldots .$. to n terms
$=\frac{7}{9}[9+99+999+9999+\ldots \ldots .$. to n terms $]$
$=\frac{7}{9}\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\left(10^{4}-1\right)+\ldots \ldots\right.$. to n terms $] \quad 1$

$$
\begin{aligned}
& =\frac{7}{9}\left[\left(10+10^{2}+10^{3}+\ldots \ldots . n \text { terms }\right)-(1+1+1+\ldots \ldots . n \text { terms })\right] \quad 1 / 2 \\
& =\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right]=\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]
\end{aligned}
$$

18. Required number of ways

$$
\begin{align*}
& ={ }^{4} \mathrm{C}_{1} \times{ }^{48} \mathrm{C}_{4} \tag{2}\\
& =\frac{4}{1} \times \frac{48 \times 47 \times 46 \times 45}{1 \times 2 \times 3 \times 4} \tag{1}\\
& =4 \times 2 \times 47 \times 46 \times 45 \\
& =778320 \tag{1}
\end{align*}
$$

19. Complex number $=\frac{1+7 \mathrm{i}}{(2-\mathrm{i})^{2}}=-1+\mathrm{i}=\mathrm{z}$

$$
\begin{aligned}
r & =|z|=\sqrt{2} \\
\text { amplitude } & =\theta=\frac{3 \pi}{4}
\end{aligned}
$$

Required polar form $=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
20. L.H.S. $=\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}$

$$
\begin{array}{lr}
=\frac{\sin 5 x+\sin x-2 \sin 3 x}{\cos 5 x-\cos x} & 1 / 2 \\
=\frac{2 \sin 3 x \cos 2 x-2 \sin 3 x}{-2 \sin 3 x \sin 2 x} & 1 \tag{1}\\
=\frac{\sin 3 x(\cos 2 x-1)}{-\sin 3 x \sin 2 x} & 1 / 2 \\
=\frac{1-\cos 2 x}{\sin 2 x} & 1 / 2
\end{array}
$$

$$
\begin{aligned}
& =\frac{2 \sin ^{2} x}{2 \sin x \cos x} \\
& =\tan x=\text { R.H.S. }
\end{aligned}
$$

OR

$$
\begin{align*}
& \sin (x+y)=\sin X \cos y+\cos x \sin y \tag{i}\\
& \cos ^{2} x=1-\sin ^{2} x=1-\frac{9}{25}=\frac{16}{25} \\
& \quad \cos x= \pm \frac{4}{5}
\end{align*}
$$

Sicne x lies in second quadrat.

$$
\begin{align*}
\therefore \quad \cos x & =-\frac{4}{5} \\
& \sin ^{2}=1-\cos ^{2} y=1-\frac{144}{169}=\frac{25}{169} \\
\therefore \quad \sin y & = \pm \frac{5}{13} \\
& \sin y
\end{align*}
$$

$\therefore \quad$ From (i), $\sin (x+y)=\frac{3}{5} \times\left(-\frac{12}{13}\right)+\left(-\frac{4}{5}\right) \times \frac{5}{13}$

$$
=-\frac{56}{65}
$$

21. (i) If a number is not divisible by 3 , it is not divisible by 9 . 1
(ii) If a number is odd, then it is a prime number. 1
(iii) $\sqrt{2}$ is a complex number. 1
(iv) For every. 1
22. (i) $A^{\prime}=\{1,2,4,5,7,8,10,11,13,14\}$
(ii) $\mathrm{A}-\mathrm{B}=\{6,9,12,15\}$
(iii) $\mathrm{A} \cup \mathrm{B}=\{1,2,3,4,5,6,9,12,15\}$
(iv) $\mathrm{B} \cap \mathrm{C}=\{2,4\}$

SECTION C

23.	Classes	Mid-point $\boldsymbol{x}_{\boldsymbol{i}}$	$x_{i} \quad f$	$u=\frac{x_{i}-10}{30}$	$f u$	u^{2}	$f u^{2}$
	0-30	15	2	- 3	- 6	9	18
	30-60	45	3	- 2	-6	4	12
	60-90	75	5	- 1	- 5	1	5
	90-120	105	10	- 0	0	0	0
	120-150	135	3	1	3	1	3
	150-180	165	5	2	10	4	20
	180-210	195	2	3	6	9	18
$\mathrm{N}=30$					$\Sigma \mathrm{fu}=2$		$\Sigma \mathrm{fu}^{2}=76$
				(2 marks for above calculation)			

Mean, $\overline{\mathrm{X}}=\mathrm{A}+\mathrm{h} \times \frac{1}{\mathrm{~N}} \sum \mathrm{fu}$

$$
=105+30\left(\frac{1}{30} \times 2\right)
$$

$$
=107
$$

Variance $\left(\sigma^{2}\right)\left[\frac{1}{\mathrm{~N}} \sum \mathrm{fu}^{2}\left(\frac{1}{\mathrm{~N}} \sum \mathrm{fu}\right)^{2}\right]$

$$
\begin{aligned}
& =900\left[\frac{1}{30}(76)-\left(\frac{1}{30} \times 2\right)^{2}\right] \\
& =2276
\end{aligned}
$$

OR

Let the other two observation be x any 6 .
$\therefore \quad$ The series is $1,2,6 \mathrm{x}, \mathrm{y}$.

$$
\begin{align*}
& \text { Mean, } \bar{X}=4.4=\frac{1+2+6+x+y}{5} \tag{1}\\
\Rightarrow & x+y=13 \quad \ldots . \text { (i) } \tag{i}
\end{align*}
$$

Variance $=8.24=\frac{1}{n} \sum_{i=1}^{5}\left(x_{i}-\bar{x}\right)^{2}$

$$
\begin{aligned}
& \Rightarrow \quad=8.24=\frac{1}{5}\left[\begin{array}{r}
(3.4)^{2}+(2.4)^{2}+(1.6)^{2}+x^{2}+y^{2}-2 \\
\times 4.4(x+y)+2 \times(4.4)^{2}
\end{array}\right] \\
& \Rightarrow \quad x^{2}+y^{2}=97
\end{aligned}
$$

Solving (i) and (ii), we get

$$
x=9, y=4 \text { or } x=4, y=9
$$

Hence, two observation are 4 and 9.
24. \quad A.M. $=\frac{a+b}{2}$

$$
\mathrm{G} . \mathrm{M} .=\sqrt{\mathrm{ab}}
$$

$$
1 / 2
$$

$$
\frac{a+b}{2 \sqrt{a b}}=\frac{m}{n}
$$

Applying componendo and dividendo property, we get

$$
\begin{aligned}
& \frac{a+b+2 \sqrt{a b}}{a+b-\sqrt{a b}}=\frac{m+n}{m-n} \\
\Rightarrow \quad & \frac{(\sqrt{a}+\sqrt{b})^{2}}{(\sqrt{a}-\sqrt{b})^{2}}=\frac{m+n}{m-n} \\
\Rightarrow \quad & \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{m+n}}{\sqrt{m-n}}
\end{aligned}
$$

Applying comonendo and dividendo property again,

$$
\begin{aligned}
& \frac{(\sqrt{a}+\sqrt{b})+(\sqrt{a}-\sqrt{b})}{(\sqrt{a}+\sqrt{b})-(\sqrt{a}-\sqrt{b})}=\frac{\sqrt{m+n}+\sqrt{m-n}}{\sqrt{m+n}-\sqrt{m-n}} \\
\Rightarrow \quad & \frac{2 \sqrt{a}}{2 \sqrt{b}}=\frac{\sqrt{m+n}+\sqrt{m-n}}{\sqrt{m+n}-\sqrt{m-n}} \\
\Rightarrow \quad & \frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{m+n}+\sqrt{m-n}}{\sqrt{m+n}-\sqrt{m-n}}
\end{aligned}
$$

$$
\text { Squaring, } \frac{a}{b}=\frac{m+n+m-n+2 \sqrt{m^{2}-n^{2}}}{b+n+m-n-2 \sqrt{m^{2}-n^{2}}}
$$

Squaring, $\frac{a}{b}=\frac{m+n+m-n+2 \sqrt{m^{2}-n^{2}}}{b+n+m-n-2 \sqrt{m^{2}-n^{2}}}$

$$
\begin{equation*}
=\frac{2 m+2 \sqrt{m^{2}-n^{2}}}{2 m-2 \sqrt{m^{2}-n^{2}}}=\frac{m+\sqrt{m^{2}-n^{2}}}{m-\sqrt{m^{2}-n^{2}}} \tag{1}
\end{equation*}
$$

$$
a: b=\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right) \quad \text { Proved. }
$$

25. Let $P(n)(n+1)(n+5)$ is a multiple of 3 .
$P(1)$ is $(1+1)(1+5)$ is a multiple of 3.
i.e. 12 is multiple of 3 which is true.

So, $P(1)$ is true.
Let $P(m)$ be true, $m \in N$.
$\Rightarrow \quad m(m+1)(m+5)$ is a multiple of 3.
$\Rightarrow \quad m(m+1)(m+5)=3 \lambda$ (let), where λ is an integer.
We shall prove that $P(m+1)$ is true.
i.e., $(m+1)(m+1+1)(m+1+5)$ is a multiple of 3 .

Now, $(m+1)(m+2)(m+6)=(m+1)\left(m^{2}+8 m+12\right\}$
$=(m+1)\left\{\left(m^{2}+5 m\right)+(3 m+12)\right\}$
$=(m+1)\left(m^{2}+5 m\right)+(m+1)(3 m+12)$
$=(m+1) m(m+5)+3(m+1)(m+4)$
$=3 \lambda+3(3 m+1)(m+4)$
$=3\{\lambda+(m+1)(m+4)\}$
$=$ a multiple of 3
$\Rightarrow \quad P(m+1)$ is true.
So by induction $P(n)$ is true for all $n \in N$
26. By sine formula, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k$ (let)
$\Rightarrow \quad a=k \sin A, b=k \sin B, C=k \sin C$
L.H.S $=\left(b^{2}-c^{2}\right) \cot A+\left(c^{2}-a^{2}\right) \cot B+\left(a^{2}-b^{2}\right) \cot C$

$$
\begin{equation*}
=\left(b^{2}-c^{2}\right) \frac{\cos A}{\sin A}+\left(c^{2}-a^{2}\right) \frac{\cos B}{\sin B}+\left(a^{2}-b^{2}\right) \frac{\cos C}{\sin C} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
= & \left(b^{2}-c^{2}\right) \frac{b^{2}+c^{2}+a^{2}}{2 b c} \cdot \frac{k}{a}
\end{aligned}+\left(c^{2}-a^{2}\right) \frac{c^{2}+a^{2}-b^{2}}{2 c a} \cdot \frac{k}{b} .
$$

$$
\text { L.H.S }=\frac{1+\cos 2 x}{2}+\frac{1+\cos \left(2 x+\frac{2 \pi}{3}\right)}{2}+\frac{1+\cos \left(2 x-\frac{2 \pi}{3}\right)}{2}
$$

$$
=\frac{1}{2}\left[3+\cos 2 x+\cos \left(2 x+\frac{2 \pi}{3}\right)+\cos \left(2 x-\frac{2 \pi}{3}\right)\right]
$$

$$
=\frac{1}{2}\left[3+\cos 2 x+2 \cos 2 x \cos \left(2 x-\frac{2 \pi}{3}\right)\right]
$$

$$
=\frac{1}{2}\left[3+\cos 2 x+2 \cos 2 x \cos \left(\pi-\frac{\pi}{3}\right)\right]
$$

$$
=\frac{1}{2}\left[3+\cos 2 x-2 \cos 2 x \cos \frac{\pi}{3}\right]
$$

$$
=\frac{1}{2}[3+\cos 2 x-2 \cos 2 x]
$$

$$
=\frac{3}{2}=\text { R.H.S }
$$

27. Suppose litre of 2% solution is added for dilution

$$
\text { Total mixture }=(640+x) \text { litre }
$$

$$
(640+x)\left(\frac{4}{100}\right)<\frac{640 \times 8}{100}+\frac{2 x}{100}<(640+x)\left(\frac{6}{100}\right)
$$

$$
\Rightarrow \quad \frac{4}{100}<\frac{5120+2 x}{100(640+x)}<\frac{6}{100}
$$

$$
\Rightarrow \quad 4<\frac{5120+2 x}{640+x}<6
$$

$$
\Rightarrow \quad 4(640+x)<5120+2 x<6(640+x)
$$

$$
\Rightarrow \quad 2560+4 x<5120+2 x \text { and } 5120+2 x<3840+6 x
$$

$$
\Rightarrow \quad 4 x-2 x<5120-2560 \text { and } 5120-3840<6 x-2 x
$$

$$
\Rightarrow \quad 2 x<2560 \text { and } 1280<4 x
$$

$$
1
$$

$$
\begin{equation*}
\Rightarrow \quad x<1280 \text { and } 320<x \tag{1}
\end{equation*}
$$

$\Rightarrow \quad 320<x<1280$
Hence the volume of 2% solution to be added lies between 320 litres and 1280 litres.
28.

$$
a+b=70
$$

since

$$
a=40 \quad \Rightarrow \quad b=30
$$

$$
a+d=75 \quad \Rightarrow \quad d=35
$$

$$
a+c=60 \quad \Rightarrow \quad c=20
$$

$e+c+a+b=105 \Rightarrow e=15$
$a+b+d+f=130 \quad \Rightarrow \quad f=25$
$g+c+a+d=145 \Rightarrow g=50$

Total people surveyed $=a+b+c+d+e+f+g$

$$
=215
$$

No. of people taking Z-brand $=g=50 \quad 1 / 2$
Taking pan-masala is very injurious to health. It causes cancer, mental disorder, high blood pressure and various other diseases. There is also a wastage of money in taking it. Compaign against pan-masala is alo required.
29. L.H.S. $=\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ}$

$$
\begin{aligned}
& =\cos 30^{\circ}\left(\cos 70^{\circ} \cos 50^{\circ}\right) \cos 10^{\circ} \\
& =\frac{\sqrt{3}}{2} \times \frac{1}{2}\left(2 \cos 70^{\circ} \cos 50^{\circ}\right) \cos 10^{\circ} \\
& =\frac{\sqrt{3}}{4}\left(\cos 120^{\circ}+\cos 20^{\circ}\right) \cos 10^{\circ} \\
& =\frac{\sqrt{3}}{4}\left[\left(-\frac{1}{2}+\cos 20^{\circ}\right] \cos 10^{\circ}\right. \\
& =\frac{\sqrt{3}}{4}\left[\left(-\frac{1}{2} \cos 10^{\circ}+\cos 20^{\circ} \cos 10^{\circ}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{8}\left[\left(-\cos 10^{\circ}+2 \cos 20^{\circ} \cos 10^{\circ}\right]\right. \\
& =\frac{\sqrt{3}}{8}\left[\left(-\cos 10^{\circ}+\cos 30^{\circ}+\cos 10^{\circ}\right]\right. \\
& =\frac{\sqrt{3}}{8} \cos 30^{\circ} \\
& =\frac{\sqrt{3}}{8} \times \frac{\sqrt{3}}{2} \\
& =\frac{3}{16}=\text { R.H.S }
\end{aligned}
$$

