KENDRIYA VIDYALAYA, PICKET, SECUNDERABAD-9

PRE-BOARD PRACTICE EXAM	MAX.MARKS:80

CLASS:XII SUB:MATHEMATICS TIME:3 HRS

General Instructions :

1. *This question paper contains two* parts A and B. *Each part is compulsory. Part A carries* **24** *marks and Part B carries* **56** *marks.*

2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.

3. Both Part A and Part B have choices.

Part – A :

1. It consists of two sections- I and II.

2. Section I comprises of 16 very short answer type questions.

3. Section II contains 2 case studies. Each case study comprises of 5 case-based MCQs. An examinee is to attempt any 4 out of 5 MCQs.

Part – B :

1. It consists of three sections-III, IV and V.

2. Section III comprises of 10 questions of 2 marks each.

3. Section IV comprises of 7 questions of 3 marks each.

4. Section V comprises of 3 questions of 5 marks each.

5. Internal choice is provided in 3 questions of Section –III, 2 questions of Section -IV and 3 questions of Section-V. You have to attempt only one of alternatives in all such questions.

S.n	PART- A	MARK
0		S
	SECTION-1	
	All questions are compulsory. In case of internal choices attempt	
	any one.	
1	Check whether the function $f: \mathbb{R} \rightarrow R$ defined as $f(x) = [x]$ is	1
	one-one or not , where [x]denotes the greatest integer less than or	
	equal to x	
	OR	1
	Find the maximum number of equivalence relations on the set A	
	= {1,2,3}	
2	Let A=[1,2,3,,n} and B={a,b} then write the number of	
	surjections from A to B.	
3	For the set A={1,2,3}, define a relation R in on the set A as	1
	$R = \{(1,1), (2,2), (3,3), (1,3)\}$, write the ordered pair to be added to	
	R to make it the smallest equivalence relation.	
	OR	
	Let R be the equivalence relation in the set A={0,1,2,3,4,5} given	1
	by	
	R ={(a,b):2 divides (a-b)}, then write equivalence class [0].	

4	If the matrix $A = [a_{ij}]_{2x2}$ where $a_{ij} = \begin{cases} 2, if \ i \neq j \\ 0, if \ i = j \end{cases}$ then write matrix A .	1
5		1
C	Solve for x, $[x 1] \begin{bmatrix} -2 & 0 \end{bmatrix} = 0$	-
	OR	
	A is a square matrix of order 3, such that $ adjA = 64$, then find $ A $.	1
6	If A and B are symmetric matrices of the same order then verify that $(AB^{T} - BA^{T})$ is symmetric or skew-symmetric matrix.	1
7	Find $\int \frac{dx}{dx}$	1
	$\int \sqrt{9-25x^2}$	
	OR	
	1 ton-1 a	
	Evaluate $\int_0^1 \frac{\tan^2 x}{1+x^2} dx$.	1
8	Find the area of the region bounded by $y=x+1$ and the lines $x=2$ and $x=3$.	1
9	Find the order and degree of the differential equation $\left(\frac{d^2 y}{d^2}\right)^2$	1
	$+(\frac{dy}{dx})^2 = x \sin\left(\frac{dy}{dx}\right)$	
	OR	
	Write the general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$	
10	If \vec{a} and \vec{b} are two vectors such that $\vec{a} \cdot \vec{b} = 6$, $ \vec{a} = 3$, $ \vec{b} =$	1
	4, then find the projection of \vec{a} on \vec{b} .	
11	Find the area of a parallelogram whose adjacent sides are $3\hat{i}$ and	1
	-2ĵ	
12	If $(2\hat{\imath}+6j+27k)x(\hat{\imath}+pj+qk) = \vec{0}$, then find the values of p and q.	1
13	A line makes equal angles with co-ordinate axis. Find the direction cosines of this line.	1
14	Find the sum of the intercepts cut off by the plane $2x+y-z=5$ on	1
	the co-ordinate axes.	
15	Probabilities of solving a specific problem independently by A	1
	and B are 1/2 and 1/3 respectively. If both try to solve the	
	problem independently, what is the probability that the problem	

	is solved?	
16	Let A and B be two events .If $P(A) = 0.2$, $P(B) = 0.4$, and $P(AUB) = 0.6$ then find $P(A/B)$.	1
	SECTION-II Both case study based questions are compulsory. Attempt any 4 sub parts from each question 17 and 18. Each question carries 1 mark.	
17	A carpenter designs a window in the form of a rectangle surmounted by a semicircle. The total perimeter of the window is 10m. Based on the above information answer the following.	
Ι	The perimeter of window in terms of x and y is a)2 x +2 y+ $\Pi x/2$ b)x+2y + $\Pi x/2$ c)2x +y + $\Pi x/2$ d)x +2y + Πx	1
II	The value of y in terms of II and x: a) $10 - (\frac{\pi+2}{4}) \times b = 5 - (\frac{\pi+2}{2}) \times c = 5 - (\frac{\pi+2}{4}) \times d$ None of these	1
III	Area of the window through which light enters is: a)xy + $\frac{\pi}{2}$ (x/2) ² b) xy + $\pi(\frac{x}{2})^2$ c) xy + $\frac{\pi}{2}$ (x) ² d) 2xy + $\frac{\pi}{2}$ (x/2) ²	1
IV	For maximum light, x should be: a) $\frac{10}{\pi+4}$ b) $\frac{10}{\pi+2}$ c) $\frac{20}{\pi+4}$ d)) $\frac{20}{\pi+2}$	1
V	For maximum light , the height of the window is :	1
	a) $\frac{20}{\pi + 4}$ b) $\frac{10}{\pi + 4}$ c) $\frac{30}{\pi + 4}$ d) None of these.	
18	A doctor is to visit a patient. From past experience, it is known	

	that the probabilities that he will come by train, bus, scooter or	
	car respectively are $(3/10)$, $(1/5)$, $(1/10)$ and $(2/5)$. The	
	probabilities that he will be late are $(1/4)$, $(1/3)$ and $(1/12)$, if he	
	comes by train, bus and scooter respectively, but if he comes by	
	car, he will not be late.	
	Based on the above information answer the following.	
Ι	The probability that the doctor is late , given that he comes by train is :	1
	a) 1/3 b) 1/4 c) 1/12 d) 0	
II	The probability that the doctor is late , given that he comes by car is :	1
	a) 1/4 b) 1/3 c) 1/12 d) 0	
III	The total probability of coming late is :	1
	a) 1/20 b) 1/10 c) 3/20 d) 7/20	
IV	When the doctor comes, he is not late, he comes by	1
	a) Train b) car c) bus d) Scooter	
V	When the doctor comes, he is late, the probability that he has	1
	come by Scooter:	
	a) 1/3 b) 1/12 c) 1/5 d) 1/18	
	PART-B	
	SECTION-III	
19	Evaluate $\tan(\sin^{-1}\frac{3}{5} + \cot^{-1}\frac{3}{2})$	2
	OR	
	Simplify $\tan^{-1}\left[\sqrt{\frac{1-\cos x}{2}}\right]$, x <ii< th=""><th></th></ii<>	
	$\sqrt{1+\cos x}$	2
20	If $A = \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix}$ then show that $A^2 - 6A + 17I = 0$. Hence find A^{-1}	2
21	Find the area of the region bounded by $y^2 = 4x$ and the line $x=3$	2
22	Find the value of k, if the function $f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \end{cases}$	2
	(3, ij x = ii/2)	

	is continuous at $x = \Pi/2$.	
23	Find the slope of the tangent to the curve $y=x^3-3x+2$ at the point	2
	, whose x-coordinate is 3.	
24	Find $\int \frac{3+3\cos x}{x+\sin x} dx$	2
	OR	
	Evaluate $\int_0^1 x(1-x)^n dx$.	2
25	Solve the differential equation $\frac{dy}{dx} = 1 - x + y - xy$	2
26	Find a vector of magnitude 5 units and parallel to the resultant of $\vec{a} = 2\hat{i}+3\hat{j}-3\hat{k}$ and $\vec{b} = \hat{i}-2\hat{j}+3\hat{k}$.	2
27	Find the vector equation of plane which is at a distance of 7	2
	units from the origin and normal to the plane is $3\hat{\iota}+5\hat{\jmath}-6\hat{k}$	
28	A coin is biased so that the head is three times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.	2
	SECTION-IV	
29	Show that the relation R in the set $A = \{(a,b):a,b \in \mathbb{Z}, a-b \text{ is divisible by 3} \}$ is an equivalence relation.	3
30	If $y = (\cos x)^x + \sin^{-1} \sqrt{x}$ find $\frac{dy}{dx}$.	3
31	If $y = e^{a \cos^{-1} x}$, $-1 \le x \le 1$, show that $(1-x^2) y_2 - x y_1 - a^2 y = 0$ OR	3
	If x= a sec t, y= b tan t find $\frac{d}{dx^2}$ at t = $\Pi/6$.	
32	Find the intervals in which the function $f(x) = \sin x + \cos x$, x $\epsilon(0, \Pi/2)$ is strictly increasing or decreasing.	3
33	Evaluate $\int_0^{\frac{\pi}{4}} log(1 + tan x) dx.$	3
34	Find the area of the region in the first quadrant enclosed by X-axis,	3
	the line $y = x$ and the circle $x^2 + y^2 = 32$	
	OR	3
	Find the area of the ellipse $x^2 + 9 y^2 = 36$ using integration.	
35	Find the general solution of the differential equation	3

	$dy/dx + y \tan x = 3 x^2 + x^3 \tan x , x \neq \frac{\pi}{2}$	
	SECTIONV	
36	Use the product $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$ to solve the system of equations	5
	x-y+2z = 1, 2y - 3z = 1, 3x - 2y + 4z = 2. OR	
	If $A = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 1 & 2 \\ 5 & 1 & 1 \end{bmatrix}$ find A^{-1} and hence solve the system of equations	5
	x + 3y + 4z = 8, $2x + y + 2z = 5$, $5x + y + z = 7$	
37	Find the shortest distance between the two lines	5
	$\vec{r} = (\hat{\imath}+2\hat{\jmath}+k\hat{}) + \lambda(\hat{\imath}-\hat{\jmath}+\hat{k}) \text{ and } \vec{r} = (2\hat{\imath}-\hat{\jmath}-\hat{k}) + \mu(2\hat{\imath}+\hat{\jmath}+2\hat{k})$	
	OR	
	Find the vector equation of plane passing through the three	
	points (1,1,-2),(2,-1,1) and (1,2,1). Also find the coordinates of the point of intersection of this plane and the line $\vec{r} = (3\hat{\iota}\cdot\hat{j}\cdot k^{}) + \lambda(2\hat{\iota}\cdot 2\hat{j})$	
	$+\hat{k}$)	
38	Solve graphically, the following Linear programming problem.	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	$x+y\leq 20, x\geq 0, y\geq 0$	
	OR	
	The corner points of the feasible region determined by the system of linear constraints are as shown below.	

