General Instructions :

1. This question paper contains two parts A and B. Each part is compulsory. Part A carries 24 marks and Part B carries 56 marks.
2. Part-A has Objective Type Questions and Part-B has Descriptive Type Questions.
3. Both Part A and Part B have choices.

Part-A :

1. It consists of two sections-I and II.
2. Section I comprises of 16 very short answer type questions.
3. Section II contains 2 case studies. Each case study comprises of 5 case-based MCQs. An examinee is to attempt any 4 out of 5 MCQs.
Part-B :
4. It consists of three sections-III, IV and V.
5. Section III comprises of 10 questions of 2 marks each.
6. Section IV comprises of 7 questions of 3 marks each.
7. Section V comprises of 3 questions of 5 marks each.
8. Internal choice is provided in 3 questions of Section -III, 2 questions of Section -IV and 3 questions of Section-V. You have to attempt only one of alternatives in all such questions.

$\begin{array}{\|l\|} \hline \text { S.n } \\ \text { o } \end{array}$	PART- A	$\begin{aligned} & \hline \text { MARK } \\ & \mathbf{S} \end{aligned}$
	SECTION-1 All questions are compulsory. In case of internal choices attempt any one.	
1	Check whether the function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined as $f(x)=[x]$ is one-one or not, where [x]denotes the greatest integer less than or equal to x OR Find the maximum number of equivalence relations on the set A $=\{1,2,3\}$	1 1
2	Let $A=[1,2,3, \ldots, n\}$ and $B=\{a, b\}$ then write the number of surjections from A to B.	
3	For the set $A=\{1,2,3\}$, define a relation R in on the set A as $R=\{(1,1),(2,2),(3,3),(1,3)\}$, write the ordered pair to be added to \mathbf{R} to make it the smallest equivalence relation. OR Let R be the equivalence relation in the set $A=\{0,1,2,3,4,5\}$ given by $R=\{(a, b): 2$ divides (a-b) $\}$,then write equivalence class [0].	1 1

4	If the matrix $A=\left[a_{i j}\right]_{2 \times 2}$ where $a_{\mathrm{ij}=}\left\{\begin{array}{l}2, \text { if } i \neq j \\ 0, \text { if } i=j\end{array} \quad\right.$ then write matrix A.	1
5	Solve for $x,\left[\begin{array}{ll}x & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -2 & 0\end{array}\right]=0$ OR A is a square matrix of order 3 , such that $\|\operatorname{adj} A\|=64$, then find $\|A\|$.	1 1
6	If A and B are symmetric matrices of the same order then verify that $\left(\mathbf{A B}^{\mathbf{T}}-\mathrm{BA}^{\mathrm{T}}\right)$ is symmetric or skew-symmetric matrix.	1
7	Find $\int \frac{d x}{\sqrt{9-25 x^{2}}}$ OR Evaluate $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$.	1 1
8	Find the area of the region bounded by $\mathbf{y}=\mathbf{x}+\mathbf{1}$ and the lines $\mathbf{x}=\mathbf{2}$ and $x=3$.	1
9	Find the order and degree of the differential equation. $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$ $+\left(\frac{d y}{d x}\right)^{2}=\mathrm{x} \sin \left(\frac{d y}{d x}\right)$ OR Write the general solution of the differential equation $\frac{d y}{d x}=\mathrm{e}^{\mathrm{x}+\mathrm{y}}$	1
10	If \vec{a} and \vec{b} are two vectors such that $\vec{a} \cdot \vec{b}=6,\|\vec{a}\|=3,\|\vec{b}\|=$ 4, then find the projection of \vec{a} on \vec{b}.	1
11	Find the area of a parallelogram whose adjacent sides are $3 \hat{\imath}$ and -2 \hat{j}	1
12	If $(\mathbf{2} \hat{\imath}+\mathbf{j}+\mathbf{2 7 k}) \mathbf{x}(\hat{\imath}+\mathrm{p} j+\mathrm{q} k)=\overrightarrow{\mathbf{0}}$, then find the values of p and q .	1
13	A line makes equal angles with co-ordinate axis. Find the direction cosines of this line.	1
14	Find the sum of the intercepts cut off by the plane $2 x+y-z=5$ on the co-ordinate axes.	1
15	Probabilities of solving a specific problem independently by A and B are $1 / 2$ and $1 / 3$ respectively. If both try to solve the problem independently, what is the probability that the problem	1

	is solved?	
16	Let A and B be two events .If $P(A)=0.2, P(B)=0.4$, and $P(A U B)=$ 0.6 then find $\mathbf{P}(\mathbf{A} / \mathrm{B})$.	1
	SECTION-II Both case study based questions are compulsory. Attempt any 4 sub parts from each question 17 and 18. Each question carries 1 mark.	
17	A carpenter designs a window in the form of a rectangle surmounted by a semicircle. The total perimeter of the window is 10 m . Based on the above information answer the following.	
I	The perimeter of window in terms of x and y is a) $2 x+2 y+\Pi x / 2$ b) $x+2 y+\Pi x / 2$ c) $2 x+y+\Pi x / 2$ d) $x+2 y+\Pi x$	1
II	The value of y in terms of Π and x : a) $10-\left(\frac{\pi+2}{4}\right) \mathrm{x}$ b) $5-\left(\frac{\pi+2}{2}\right) \mathrm{x}$ c) $5-\left(\frac{\pi+2}{4}\right) x$ d) None of these	1
III	Area of the window through which light enters is: a) $\mathrm{xy}+\frac{\pi}{2}(\mathrm{x} / 2)^{2}$ b) $\mathrm{xy}+\pi\left(\frac{x}{2}\right)^{2}$ c) $x y+\frac{\pi}{2}(x)^{2}$ d) $2 x y+\frac{\pi}{2}(x / 2)^{2}$	1
IV	For maximum light, x should be : a) $\frac{10}{\pi+4}$ b) $\frac{10}{\pi+2}$ c) $\frac{20}{\pi+4}$ d)) $\frac{20}{\pi+2}$	1
V	For maximum light, the height of the window is : a) $\frac{20}{\pi+4}$ b) $\frac{10}{\pi+4}$ c) $\frac{30}{\pi+4}$ d) None of these.	1
18	A doctor is to visit a patient. From past experience, it is known	

	that the probabilities that he will come by train, bus, scooter or car respectively are $(3 / 10),(1 / 5),(1 / 10)$ and $(2 / 5)$. The probabilities that he will be late are (1/4), (1/3) and (1/12), if he comes by train, bus and scooter respectively, but if he comes by car, he will not be late. Based on the above information answer the following.	
I	The probability that the doctor is late, given that he comes by train is : a) $1 / 3$ b) $\mathbf{1 / 4}$ c) $\mathbf{1 / 1 2}$ d) 0	1
II	The probability that the doctor is late, given that he comes by car is : a) $\mathbf{1 / 4}$ b) $1 / 3$ c) $\mathbf{1 / 1 2}$ d) 0	1
III	The total probability of coming late is : a) $\mathbf{1 / 2 0}$ b) $1 / 10$ c) $3 / 20$ d) $7 / 20$	1
IV	When the doctor comes, he is not late, he comes by a) Train b) car c) bus d) Scooter	1
V	When the doctor comes , he is late, the probability that he has come by Scooter: a) $1 / 3$ b) $\mathbf{1 / 1 2}$ c) $1 / 5$ d) $\mathbf{1 / 1 8}$	1
	PART-B	
	SECTION-III	
19	Evaluate $\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)$ OR Simplify $\tan ^{-1}\left[\sqrt{\frac{1-\cos x}{1+\cos x}}\right], \mathrm{x}<\Pi$	2
20	If $A=\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]$ then show that $A^{2}-6 A+17 I=O$. Hence find A^{-1}	2
21	Find the area of the region bounded by $y^{2}=4 x$ and the line $x=3$	2
22	Find the value of k, if the function $f(x)=\left\{\begin{array}{c}\frac{k \cos x}{\pi-2 x} \\ 3, \text { if } x=\Pi / 2\end{array}\right.$ if $x \neq \frac{\Pi}{2}$	2

	is continuous at $\mathrm{x}=\Pi / 2$.	
23	Find the slope of the tangent to the curve $y=x^{3}-3 x+2$ at the point whose x-coordinate is 3 .	2
24	Find $\int \frac{3+3 \cos x}{x+\sin x} d x$ Evaluate $\int_{0}^{1} x(1-x)^{n} d x$.	2
25	Solve the differential equation $\frac{d y}{d x}=1-x+y-x y$	2
26	Find a vector of magnitude 5 units and parallel to the resultant of $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}-3 \widehat{k} \text { and } \vec{b}=\hat{\imath}-2 \hat{\jmath}+3 \widehat{k}$	2
27	Find the vector equation of plane which is at a distance of 7 units from the origin and normal to the plane is $3 \hat{\imath}+5 \hat{\jmath}-6 \widehat{k}$	2
28	A coin is biased so that the head is three times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.	2
	SECTION-IV	
29	Show that the relation R in the set $A=\{(a, b): a, b \in Z,\|a-b\|$ is divisible by 3 \} is an equivalence relation.	3
30	If $y=(\cos x)^{x}+\sin ^{-1} \sqrt{x}$ find $\frac{d y}{d x}$.	3
31	If $\mathrm{y}=e^{a \cos ^{-1} x},-1 \leq \mathrm{x} \leq 1$, show that $\left(1-\mathrm{x}^{2}\right) \mathrm{y}_{2}-\mathrm{x} \mathrm{y}_{1}-\mathrm{a}^{2} \mathrm{y}=0$ OR If $\mathbf{x}=\mathbf{a} \sec \mathrm{t}, \mathrm{y}=\mathrm{b} \tan \mathrm{t}$ find $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{t}=\Pi / 6$.	3
32	Find the intervals in which the function $f(x)=\sin x+\cos x, x$ $\varepsilon(0, \Pi / 2)$ is strictly increasing or decreasing.	3
33	Evaluate $\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$.	3
34	Find the area of the region in the first quadrant enclosed by X axis , the line $y=x$ and the circle $x^{2}+y^{2}=32$ OR Find the area of the ellipse $x^{2}+9 y^{2}=36$ using integration.	3
35	Find the general solution of the differential equation	3

	$d y / d x+y \tan x=3 x^{2}+x^{3} \tan x, x \neq \frac{\pi}{2}$	
	SECTION -V	
36	Use the product $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$ to solve the system of equations $x-y+2 z=1,2 y-3 z=1,3 x-2 y+4 z=2$ OR If $A=\left[\begin{array}{lll}1 & 3 & 4 \\ 2 & 1 & 2 \\ 5 & 1 & 1\end{array}\right]$ find A^{-1} and hence solve the system of equations $x+3 y+4 z=8,2 x+y+2 z=5,5 x+y+z=7$	5
37	Find the shortest distance between the two lines $\vec{r}=\left(\hat{\imath}+2 \hat{\jmath}+\boldsymbol{k}^{\wedge}\right)+\lambda(\hat{\imath}-\hat{\jmath}+\widehat{k}) \text { and } \vec{r}=(2 \hat{\imath}-\hat{\jmath}-\widehat{k})+\mu(2 \hat{\imath}+\hat{\jmath}+2 \widehat{k})$ OR Find the vector equation of plane passing through the three points $(1,1,-2),(2,-1,1)$ and $(1,2,1)$.Also find the coordinates of the point of intersection of this plane and the line $\vec{r}=\left(3 \hat{l}-\hat{\jmath}-k^{\hat{\prime}}\right)+\lambda(2 \hat{\imath}-2 \hat{\jmath}$ $+\widehat{\boldsymbol{k}}$)	5
38	Solve graphically, the following Linear programming problem. $\text { Maximise } Z=22 x+18 y$ Subject to $3 x+2 y \leq 48$ $\mathbf{x}+\mathbf{y} \leq 20, \quad \mathbf{x} \geq 0, \quad \mathbf{y} \geq \mathbf{0}$ OR The corner points of the feasible region determined by the system of linear constraints are as shown below.	

Answer each of the following .
(i) Let $Z=5 x-2 y$ be the objective function. Find the maximum and minimum value of Z and also the corresponding points at which the maximum and minimum values occurs.
(ii) Corner points of the feasible region determined by the system of linear constraints are $(0,3),(1,1)$ and $(3,0)$.Let $\mathbf{Z}=\mathbf{p x}+q \mathbf{y}$,where $p, q>0$.
Find the condition on p and q so that the minimum of Z occurs at (3,0) and (1,1).

